Self-assembly of aluminium-pillared clay on a gold support

(Note: The full text of this document is currently only available in the PDF Version )

Pegie Cool, Abraham Clearfield, Vimala Mariagnanam, Laurel J. Mc. Ellistrem, Richard M. Crooks and Etienne F. Vansant


Abstract

Multilayer films of self-assembled aluminium Keggin ion pillared laponite and saponite have been grown layer-by-layer on a gold support. 4-Aminothiophenol (4-ATP) was used for anchoring the first clay layer on the gold surface. Subsequently layers of clay and Al pillar were adsorbed by dipping the substrate into the appropriate solutions. Characterization of the films was performed by X-ray photoelectron spectroscopy (XPS), IR spectroscopy (FTIR–ERS), ellipsometric thickness measurements and X-ray diffraction (XRD). XPS elemental analysis showed that both clay and pillar were present on the gold substrate. From the atomic film compositions, the charges on the Keggin ions were determined to be +3 and +5 for laponite and saponite, respectively. Ellipsometry and IR spectroscopy indicated gradual and regular growth for both films. Structural order in the synthesized films was demonstrated by X-ray diffraction. The interlayer free spacing (IFS) was found to be 6 Å by XRD, which corresponds to the increase in ellipsometric film thickness after each aluminium layer adsorption. Aluminium-pillared laponite films have been used as chemically sensitive films on surface acoustic wave (SAW) devices to measure the adsorption capacity of six volatile organic compounds (VOCs). The influences of the different terminal film layers and calcination-induced chemical changes on the extent of adsorption of the VOCs were investigated.


References

  1. T. J. Pinnavaia, Science, 1983, 220, 365 CrossRef CAS.
  2. Catal. Today, Special Issue on Pillared Clays, 1988, vol. 2 Search PubMed.
  3. A. Molinard and E. F. Vansant, Adsorption, 1995, 1, 49 CrossRef CAS.
  4. R. A. Schoonheydt, H. Leeman, A. Scorpion, I. Lenotte and P. Grobet, Clays Clay Miner., 1994, 42, 518 CAS.
  5. K. Ohtsuka, Y. Hayashi and M. Suda, Chem. Mater., 1993, 5, 1823 CrossRef CAS.
  6. J. Sterte, Clays Clay Miner., 1986, 34, 658 CAS.
  7. N. Maes, I. Heylen, P. Cool, M. De Bock, C. Vanhoof and E. F. Vansant, J. Porous Mater., 1996, 3, 47 Search PubMed.
  8. P. Cool, N. Maes, I. Heylen, M. De Bock and E. F. Vansant, J. Porous Mater., 1996, 3, 157 Search PubMed.
  9. E. R. Kleinfeld and G. S. Ferguson, Science, 1994, 265, 370 CrossRef CAS.
  10. S. W. Keller, K. Hyuk-Nyun and T. E. Mallouk, J. Am. Chem. Soc., 1994, 116, 8817 CrossRef CAS.
  11. G. S. Ferguson and E. R. Kleinfeld, Adv. Mater., 1995, 7, 414 CrossRef CAS.
  12. G. Cao, H.-G. Hong and T. E. Mallouk, Acc. Chem. Res., 1992, 25, 420 CrossRef CAS.
  13. R. A. Schoonheydt, J. Van Den Eynde, H. Tubbax, H. Leeman, M. Stuyckens, I. Lenotte and W. E. E. Stone, Clays Clay Miner., 1993, 41, 598 CAS.
  14. H. C. Yang, D. L. Dermody, C. Xu, A. J. Ricco and R. M. Crooks, Langmuir, 1996, 12, 726 CrossRef CAS.
  15. R. C. Thomas, L. Sun, R. M. Crooks and A. J. Ricco, Langmuir, 1991, 7, 620 CrossRef CAS.
  16. H. Wohltjen, Sens. Actuators, 1984, 5, 307 CrossRef CAS.
  17. A. Molinard, PhD Thesis, University of Antwerp, 1994.
  18. D. E. W. Vaughan, Catal. Today, 1988, 2, 187 CrossRef CAS.
  19. J. R. Jones and J. H. Purnell, Catal. Lett., 1993, 18, 137 CrossRef CAS.
  20. R. G. Nuzzo and D. L. Allare, J. Am. Chem. Soc., 1983, 105, 4481 CrossRef CAS.
  21. A. Clearfield and B. D. Roberts, Inorg. Chem., 1988, 27, 3237 CrossRef CAS.
  22. O. Braddell, R. C. Barklie and D. H. Doff, Clay Miner., 1990, 25, 15 Search PubMed.
  23. M. Tokarz and J. Shabtai, Clays Clay Miner., 1985, 33, 89 CAS.
  24. R. A. Schoonheydt and H. Leeman, Clay Miner., 1992, 27, 249 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.