High thermal resistance of γ-Al2O3 prepared by the selective leaching of calcined kaolin minerals

(Note: The full text of this document is currently only available in the PDF Version )

Yoshitoshi Saito, Takayuki Motohashi, Shigeo Hayashi, Atsuo Yasumori and Kiyoshi Okada


Abstract

The thermal resistance of mesoporous γ-Al2O3 prepared by selective leaching of calcined kaolin minerals has been investigated. γ-Al2O3 prepared from four types of kaolin minerals calcined at 950 C for 24 h followed by leaching with KOH at 90 C for 1–3 h had specific surface areas as high as 200–300 m2 g-1 and pores with uniform radii of ca. 3 nm. The specific surface area decreased gradually with higher heating temperatures. However, the specific surface areas of the samples from kaolin minerals with low impurities were maintained at 70–110 m2 g-1 after heating at 1200 C for 1 h. This high thermal resistance was due to the characteristic microtexture of the γ-Al2O3, which consisted of fine γ-Al2O3 grains interspaced with residual amorphous silica in the pseudomorph particles of kaolin minerals. Amorphous silica suppressed the gamma- -> alpha-Al2O3 phase transition by preventing γ-Al2O3 grains from coming into contact and coalescing to give a lower specific surface area.


References

  1. R. Prasad, L. A. Kennedy and E. Ruckenstein, Catal. Rev.-Sci. Eng., 1984, 26, 1 Search PubMed.
  2. L. M. Sheppard in Porous Ceramics: Processing and Applications, ed. K. Ishizaki, L. Sheppard, S. Okada, T. Hamasaki and B. Huybrechts, (Ceramic Transactions, vol. 31, Porous Materials, The American Ceramic Society, Westerville, OH, 1993, p. 3) Search PubMed.
  3. B. E. Yoldas, Ceram. Bull., 1975, 54, 286 Search PubMed.
  4. H. Schaper, E. B. M. Doesburg and L. L. Van Reijen, Appl. Catal., 1983, 7, 211 Search PubMed.
  5. M. Machida, K. Eguchi and H. Arai, Chem. Lett., 1986, 151 Search PubMed.
  6. M. Machida, K. Eguchi and H. Arai, J. Catal., 1987, 103, 385 Search PubMed.
  7. M. Machida, K. Eguchi and H. Arai, Bull. Chem. Soc. Jpn., 1988, 61, 3659 Search PubMed.
  8. B. E. Yoldas, J. Mater. Sci., 1976, 11, 465 Search PubMed.
  9. B. Beguin, E. Garbowski and M. Primet, J. Catal., 1991, 127, 595 Search PubMed.
  10. T. Horiuchi, T. Sugiyama and T. Mori, J. Mater. Chem., 1993, 3, 861 Search PubMed.
  11. M. Inoue, H. Otsu, H. Kominami and T. Inui, J. Mater. Sci. Lett., 1992, 11, 269 Search PubMed.
  12. M. Inoue, H. Kominami and T. Inui, J. Mater. Sci., 1994, 29, 2459 Search PubMed.
  13. M. Niwa, N. Katada and Y. Murakami, J. Phys. Chem., 1990, 94, 6441 Search PubMed.
  14. T. Ishikawa, R. Ohashi, H. Nakabayashi, N. Kakuta, A. Ueno and A. Furuta, J. Catal., 1992, 134, 87 Search PubMed.
  15. T. Fukui and M. Hori, J. Mater. Sci. Lett., 1994, 13, 413 Search PubMed.
  16. Y. Mizushima and M. Hori, J. Mater. Res., 1995, 10, 1424 Search PubMed.
  17. Y. Mizushima and M. Hori, J. Mater. Sci., 1995, 30, 1551 Search PubMed.
  18. K. Okada, H. Kawashima, Y. Saito, S. Hayashi and A. Yasumori, J. Mater. Chem., 1995, 5, 1241 Search PubMed.
  19. K. Okada, N. Otsuka and J. Ossaka, J. Am. Ceram. Soc., 1986, 69, C251 Search PubMed.
  20. E. P. Barrett, L. G. Joyner and P. P. Halenda, J. Am. Chem. Soc., 1951, 73, 373 Search PubMed.
  21. Y. Wakao and T. Hibino, Nagoya Kogyo Gijutsu Shikensho Hokoku, 1962, 11, 588 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.