Chemical stability study of BaCe0.9Nd0.1O3-α high-temperature proton-conducting ceramic

(Note: The full text of this document is currently only available in the PDF Version )

Fanglin Chen, O. Toft Sørensen, Guangyao Meng and Dingkun Peng


Abstract

BaCe0.9Nd0.1O3-α (BCN) ceramic is known to be an excellent high-temperature proton conductor and is a candidate electrolyte for use in solid oxide fuel cells, hydrogen or steam sensors and steam electrolysers. In this work, the chemical stability of BCN was investigated systematically by combining XRD and DTA–TG techniques to study its processing compatibility and its feasibility in potential applications. It was found that above 1200 °C, BCN reacted with alumina or zirconia, leading to the loss of barium and an excess of cerium. In cold water, both sintered BCN disks and powder samples had very low solubility and did not hydrolyse, but they were soluble in some mineral acids, especially in HCl with the liberation of Cl2 . In boiling water, BCN pellets dissolved readily with decomposition into CeO2 and Ba(OH)2 . In 1 atm CO2 , BCN decomposed to form CeO2 and BaCO3 below 1200 °C during heating, but during cooling it was stable above 1000 °C, possibly because BCN has different crystal structures at low and high temperatures. At 600–1000 °C, BCN showed a slight mass loss when exposed to a reducing atmosphere, and a slight mass gain in an oxidizing atmosphere. XRD results revealed that BCN demonstrated chemical and structural stability in both reducing and oxidizing atmospheres.


References

  1. H. Iwahara, H. Uchida, K. Ogaki and K. Ono, J. Electrochem. Soc., 1988, 135, 529.
  2. J. F. Liu and A. S. Nowick, Solid State Ionics, 1992, 50, 131 CrossRef CAS.
  3. H. Iwahara, H. Uchida and K. Morimoto, J. Electrochem. Soc., 1990, 137, 462 CAS.
  4. H. Iwahara, H. Uchida, K. Ogaki and H. Nagato, J Electrochem. Soc., 1991, 138, 195.
  5. H. Iwahara, Chemical Sensor Technology, 1991, 3, 117 Search PubMed.
  6. C.-H. Lu and L. C. De Jonghe, J. Am. Ceram. Soc., 1994, 77, 2523 CAS.
  7. D. A. Stevensen, N. Jiang, R. M. Buchanan and F. E. G. Henn, Solid State Ionics., 1992, 62, 279 CrossRef CAS.
  8. C. W. Tanner and A. V. Virkar, J. Electrochem. Soc., 1996, 143, 1386 CAS.
  9. M. J. Scholten, J. Schoonman, J. C. van Miltenburg and H. A. J. Oonk, Solid State Ionics, 1993, 61, 83 CrossRef CAS.
  10. S. Gopalan and A. V. Virkar, J. Electrochem. Soc., 1993, 140, 1060 CAS.
  11. T. Matsui, Thermochim. Acta, 1995, 253, 155 CrossRef CAS.
  12. I. Barin and O. Knacke, Thermochemical properties of inorganic substances, Springer-Verlag, Berlin, 1973 Search PubMed.
  13. E. M. Kelder, O. C. J. Nijs and J. Schoonman, Solid State Ionics, 1994, 68, 5 CrossRef CAS.
  14. N. Jiang, R. M. Buchanan, Z. Lu, D. A. Stevenson, R. Hiskes and S. A. DiCarolis, Appl. Phys. Lett., 1994, 64, 3104 CrossRef CAS.
  15. H. Yokokawa, N. Sakai, T. Kawada and M. Dokiya, Denki Kagaku, 1990, 58, 561 Search PubMed.
  16. N. Taniguchi and T. Gamo, Denki Kagaku, 1994, 62, 327 Search PubMed.
  17. N. Taniguchi, E. Yasumoto and T. Gamo, J. Electrochem. Soc., 1996, 143, 1886 CAS.
  18. H. Uchida, A. Yasuda and H. Iwahara, Denki Kagaku, 1989, 57, 153 Search PubMed.
  19. H. Iwahara, H. Uchida and K. Morimoto, J. Electrochem. Soc., 1990, 137, 462 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.