Non-hydrolytic sol–gel process: zirconium titanate gels

(Note: The full text of this document is currently only available in the PDF Version )

Mahandrimanana Andrianainarivelo, Robert J. P. Corriu, Dominique Leclercq, P. Hubert Mutin and André Vioux


Abstract

The effectiveness of a non-hydrolytic sol–gel process for the preparation of bicomponent oxides has been studied in the 1:1 system TiO2–ZrO2 . Elemental analysis by energy dispersive X-ray analysis (EDXA) and by inductively coupled plasma (ICP) showed the same Ti:Zr ratio for the amorphous oxide and crystalline ZrTiO4 which corresponds to that of the initial solution. The direct crystallization of ZrTiO4 below 700 °C without the intermediate formation of TiO2 or ZrO2 indicates that the non-hydrolytic sol–gel process gives rise to the formation of homogeneous zirconium titanate gels.


References

  1. C. J. Brinker and G. W. Scherer, Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing, Academic Press, San Diego, 1990 Search PubMed.
  2. J. Livage, M. Henry and C. Sanchez, Prog. Solid State Chem., 1988, 18, 259 CrossRef CAS.
  3. L. L. Hench and J. West, Chem. Rev., 1990, 90, 33 CrossRef CAS.
  4. A. Vioux and D. Leclercq, Heterogen. Chem. Rev., 1996, 3, 65 CrossRef CAS.
  5. R. J. P. Corriu, D. Leclercq, P. Lefèvre, P. H. Mutin and A. Vioux, J. Non-Cryst. Solids, 1992, 146, 301 CAS; J. Mater. Chem., 1992, 2, 673 Search PubMed; Chem. Mater., 1992, 4, 961 Search PubMed.
  6. S. Acosta, R. J. P. Corriu, D. Leclercq, P. Lefèvre, P. H. Mutin and A. Vioux, J. Non-Cryst. Solids, 1994, 170, 234 CrossRef CAS.
  7. P. Arnal, R. J. P. Corriu, D. Leclercq, P. H. Mutin and A. Vioux, Mater. Res. Soc. Symp. Proc., 1994, 346, 339 CAS.
  8. S. Acosta, R. J. P. Corriu, D. Leclercq, P. H. Mutin and A. Vioux, J. Sol–Gel Sci. Technol., 1994, 2, 25 Search PubMed.
  9. S. Acosta, R. J. P. Corriu, D. Leclercq, P. H. Mutin and A. Vioux, Mater. Res. Soc. Symp. Proc., 1994, 346, 345 CAS.
  10. S. Acosta, P. Arnal, R. J. P. Corriu, D. Leclercq, P. H. Mutin and A. Vioux, Mater. Res. Soc. Symp. Proc., 1994, 346, 43 CAS.
  11. M. Andrianainarivelo, R. J. P. Corriu, D. Leclercq, P. H. Mutin and A. Vioux, J. Mater. Chem., 1996, 6, 1665 RSC.
  12. G. Engelhardt and D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolites, Wiley, Chichester, 1987 Search PubMed.
  13. D. C. Bradley and D. A. W. Hill, J. Chem. Soc., 1963, 2101 RSC.
  14. A. E. McHale and R. S. Roth, J. Am. Ceram. Soc., 1986, 69, 827 CAS.
  15. J. A. Navio, F. J. Marchena, M. Macias, P. J. Sanchez-Soto and P. Pichat, J. Mater. Sci., 1992, 27, 2463 CAS.
  16. L. M. Macias, P. J. Sanchez-Soto and J. A. Navio, J. Non-Cryst. Solids, 1992, 147 & 148, 262.
  17. L. Bonhomme-Coury, N. Lequeux, S. Mussotte and P. Bloch, J. Sol–Gel Sci. Technol., 1994, 2, 371 Search PubMed.
  18. T. Isobe, Y. Okamoto and M. Senna, Mater. Res. Soc. Symp. Proc., 1994, 346, 273 CAS.
  19. A. K. Bhattacharya, K. K. Mallick, A. Hartridge and J. L. Woodhead, Mater. Lett., 1994, 18, 247 CrossRef CAS; J. Mater. Sci., 1996, 31267 Search PubMed.
  20. R. W. Lynch and B. Motosin, J. Am. Ceram. Soc., 1972, 55, 409 CAS.
  21. F. Hund, Z. Anorg. Allg. Chem., 1985, 525, 221 CrossRef CAS.
  22. Y. Hirashima, K. Nishiwaki, A. Miyakoshi, H. Tsuiki, A. Ueno and H. Nakabayashi, Bull. Chem. Soc. Jpn., 1988, 61, 1945 CAS and references therein.
  23. C. M. Phillippi and K. S. Mazdiyasni, J. Am. Ceram. Soc., 1971, 54, 254 CAS.
  24. G. A. Olah, Friedel-Crafts and Related Reactions, Interscience Publishers, New York, 1963.
Click here to see how this site uses Cookies. View our privacy policy here.