Formation of pillared arrays by anodization of silicon in the boundary transition region: an AFM and XRD study

(Note: The full text of this document is currently only available in the PDF Version )

Serghei K. Lazarouk and Anthony A.G. Tomlinson


Abstract

The anodization of Si «100» and «111» wafers in dilute HF solutions has been investigated, with particular reference to probing the surface chemistry and features between the porous and electropolishing regions (the ‘boundary transition’ region). Conditions have been found for inducing the formation of ordered arrays of columnar (or ‘pillar’) artefacts, shown to occur only in this region, and whose formation depends crucially on electrochemical parameters and anodization times. Detailed atomic force microscopy (AFM) observations confirm this suggestion, and demonstrate that the arrays consist of relatively ordered long grooves and trenches, though the pillars forming them vary greatly in size. AFM also shows that the best anodization time for maximum ordering of these arrays isca. 12 min, both low (4 min) and high (40 min) anodization times giving rise only to disordered surface structures (though still columnar even after 40 min). These arrays form pseudo-planes which attenuate the absorption of X-rays by (111) and (100) reflections, whereas the non-pillared ones do not. Relevance to current pore formation theories is discussed.


References

  1. L. T. Canham, Appl. Phys. Lett., 1990, 57, 1046 CrossRef CAS; L. T. Canham, W. Y. Leong, M. I. J. Beale, T. I. Cox and L. T. Taylor, Appl. Phys. Lett., 1992, 61, 2563 CrossRef CAS.
  2. S. Lazarouk, V. Bondarenko, P. Pershukevich, S. La Monica, G. Maiello and A. Ferrari, Mater. Res. Soc. Symp. Proc., 1995, 358, 96.
  3. R. L. Smith and S. D. Collins, J. Appl. Phys., 1992, 71, R1 CrossRef CAS.
  4. R. L. Canham, A. G. Cullis, C. Pickering, O. D. Dosser, T. I. Cox and T. P. Lynch, Nature (London), 1994, 368, 133 CrossRef.
  5. V. P. Bondarenko, A. M. Dorofeev, M. Kazuchits and S. K. Lazarouk, in Physics, Chemistry and Applications of Nanostructures, ed. V. Borisenko, S. Gaponenko and S. Gurin, Trans Tech Publications, 1997, in press Search PubMed.
  6. S. K. Lazarouk, V. Chumash, E. Fazio, S. La Monica, G. Maiello and E. Proverbio, Mater. Res. Soc. Symp. Proc., 1995, 358, 357 CAS; M. Bertolotti, F. Carassiti, E. Fazio, A. Ferrari, S. La Monica and S. Lazarouk, Thin Solid Films, 1995, 255, 365 CrossRef.
  7. S. K. Lazarouk and A. A. G. Tomlinson, Eur. Pat. Appl., 1996 Search PubMed.
  8. Q. Zang, S. C. Bayliss and D. A. Hutt, Appl. Phys. Lett., 1995, 66, 1977 CrossRef.
  9. V. Lehman, Adv. Mater., 1993, 4, 762 CrossRef.
  10. K. Takemoto, Y. Nakamura and O. Nittono, Jpn. J. Appl. Phys., 1994, 33, 6432 CrossRef CAS.
  11. V. Lehman and H. Full, J. Electrochem. Soc., 1990, 137, 653 CAS.
  12. D. L. Kendall, Ann. Rev. Mater. Sci., 1979, 9, 373 Search PubMed.
  13. P. Allongue, H. Brune and H. Gerischer, Surf. Sci., 1992, 275, 414 CrossRef CAS.
  14. Tao Yu, R. Laiho and L. Heikkila, J. Vac. Sci. Technol. B, 1994, 12, 2437 CrossRef CAS.
  15. S.-L. You, M. Arendt, A. J. Bard, B. Evans, C. Tsai, J. Sarathy and J. C. Campbell, J. Electrochem. Soc., 1994, 141, 402.
  16. H. N. Waltenburg and J. Y. Yates, Jr., Chem. Rev., 1995, 95, 1589 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.