The influence of the milling liquid on the properties of barium titanate powders and ceramics

(Note: The full text of this document is currently only available in the PDF Version )

Hans-Peter Abicht, Dieter Völtzke, Andreas Röder, Reinhard Schneider and Jörg Woltersdorf


Abstract

The influence of the milling liquid on the properties of donor-doped (La3+) semiconducting barium titanate (BaTiO3) ceramics, generated by the mixed oxide technique, was investigated. Distilled water and propan-2-ol were used as milling liquids. Water was found to have two essential effects. First, it dissolves Ba2+ ions out of BaTiO3 grains, thus creating core–shell structures which were confirmed by high-resolution electron microscopy (HREM) and electron energy loss spectroscopy (EELS). They consist of a 3–5 nm thick TiOx-rich layer followed by a layer (ca. 10 nm thick) with a molar Ba/Ti ratio increasing from 0 to 1. These core–shell structures of the BaTiO3 powder positively affect the sintering behaviour of the greens by the high reactivity of the Ti-rich interlayer. Secondly, water cleans the BaTiO3 powder of acceptor contaminants, producing ceramics with a low electrical resistivity at room temperature. Propan-2-ol-milled ceramics of a comparable composition show an electrical resistivity up to six orders of magnitude higher, owing to the compensation of La3+-doping by acceptor contaminants.


References

  1. A. Bauer, D. Bühling, H.-J. Gesemann, G. Helke and W. Schreckenbach, in Technologie und Anwendungen von Ferroelektrika, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1976, pp. 199 ff Search PubMed.
  2. D. A. Anderson, J. H. Adair, D. V. Miller, J. V. Biggers and T. R. Shrout, Ceram. Trans., 1988, 485, 485 Search PubMed.
  3. D. V. Miller, J. H. Adair and R. E. Newnham, Ceram. Trans., 1988, 485, 493 Search PubMed.
  4. W. Heywang and H. Bauer, Solid State Electronics, 1965, 8, 129 Search PubMed.
  5. G. W. Ferner and M. G. Mellon, Ind. Eng. Chem., 1943, 6, 345 Search PubMed.
  6. Landolt-Börnstein, Gleichgewichte-Lösungsgleichgewichte, Springer-Verlag, Berlin, 1962–1964, vol. 2, part 2b, pp. 3–618 ff Search PubMed.
  7. E. Merck, Dept. SFC/V, Tl, Data sheet Barium carbonate Selectipur, 1711.
  8. R. K. Sharma, N. H. Chan and D. M. Smyth, J. Am. Ceram. Soc., 1985, 68, 372.
  9. A. Jovanovic, M. Wöhlecke, S. Kapphan, A. Maillard and G. Godefroy, J. Phys. Chem. Solids, 1989, 50, 623 CrossRef CAS.
  10. R. Waser, Ber. Bunsen-Ges. Phys. Chem., 1986, 90, 1223 Search PubMed.
  11. G. Busca, V. Buscaglia, M. Leoni and P. Nanni, Chem. Mater., 1994, 6, 955 CrossRef CAS.
  12. T. Takeuchi, K. Ado, H. Kagegawa, Y. Saito, C. Masquelier and O. Nakamura, J. Am. Ceram. Soc., 1994, 77, 1665 CAS.
  13. D. Völtzke and H.-P. Abicht, J. Mater. Sci., 1995, 30, 4896.
  14. J. M. Criado, M. J. Dianez, F. Gotor, C. Real, M. Mundi and S. Ramos, Ferroelectr., Lett. Sect., 1992, 14, 79 Search PubMed.
  15. J.-L. Hebrard, P. Nortier, M. Pijolat and M. Soustelle, J. Am. Ceram. Soc., 1990, 73, 79 CAS.
  16. F. Valdivieso, M. Pijolat, C. Magnier and M. Soustelle, Solid State Ionics, 1996, 83, 283 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.