Thermal oxidation of carbothermal β′-sialon powder: reaction sequence and kinetics

(Note: The full text of this document is currently only available in the PDF Version )

Kenneth J. D. MacKenzie, Shiro Shimada and Takenori Aoki


Abstract

The oxidation of carbothermally synthesised β′-sialon powder (z=2.45) was found by X-ray powder diffraction and solid-state 29Si and 27Al MAS NMR spectroscopies to result in the initial formation of amorphous SiO2 and a non-crystalline mullite-like aluminosilicate which becomes crystalline at higher temperatures. The evolution of crystalline mullite is accompanied by a decrease in both the sialon z value and in the proportion of tetrahedral Al. The ratio of 29Si in the SiO2 to 29Si in the mullite oxidation products is about 4, consistent with the formation of Al2O3 as an additional oxidation product. The oxidation kinetics at 1100–1300 °C are described by a parabolic rate law with an activation enthalpy of 161 kJ mol-1 , suggesting the rate-determining step to be the permeation of oxygen through the oxidised layer coating the sialon grains.


References

  1. H. Du, R. E. Tressler and K. E. Spear, J. Electrochem. Soc., 1989, 136, 3210 CAS.
  2. S. C. Singhal, J. Mater. Sci., 1976, 11, 500 CrossRef CAS.
  3. W. C. Tripp and H. C. Graham, J. Am. Ceram. Soc., 1976, 59, 399 CAS.
  4. D. Cubicciotti and K. H. Lau, J. Am. Ceram. Soc., 1978, 61, 512 CAS.
  5. D. M. Mieskowski and W. A. Sanders, J. Am. Ceram. Soc., 1985, 68, C160 CAS.
  6. R. M. Horton, J. Am. Ceram. Soc., 1969, 52, 121 CAS.
  7. P. S. Wang, S. M. Hsu, S. G. Malghan and T. N. Wittberg, J. Mater. Sci., 1991, 26, 3249 CAS.
  8. S. C. Singhal and F. F. Lange, J. Am. Ceram. Soc., 1977, 60, 190 CAS.
  9. T. Chartier, J. L. Besson and P. Goursat, Int. J. High Tech. Ceram., 1986, 2, 33 Search PubMed.
  10. K. J. D. MacKenzie, R. H. Meinhold, G. V. White, C. M. Sheppard and B. L. Sherriff, J. Mater. Sci., 1994, 29, 2611 CrossRef CAS.
  11. T. Ekström, P. O. Kall, M. Nygren and P. O. Olsson, J. Mater. Sci., 1989, 24, 1853.
  12. W. E. Cameron, Am. Ceram. Soc. Bull., 1977, 56, 1003 CAS.
  13. J. Sjöberg, R. K. Harris and D. C. Apperley, J. Mater. Chem., 1992, 2, 433 RSC.
  14. J. V. Smith and C. S. Blackwell, Nature (London), 1983, 303, 223 CrossRef CAS.
  15. L. H. Merwin, A. Sebald, H. Rager and H. Schneider, Phys. Chem. Miner., 1991, 18, 47 CrossRef CAS.
  16. P. Goursat, P. Lortholary, D. Tetard and M. Billy, Proc. Int. Symp. React. Solids, Bristol, 1972, ed. J. S. Anderson, Chapman and Hall, London, 1972, pp. 315–326 Search PubMed.
  17. J. D. Choi, D. B. Fischbach and W. D. Scott, J. Am. Ceram. Soc., 1989, 72, 1118.
  18. E. L. Williams, J. Am. Ceram. Soc., 1965, 46, 190.
  19. G. Meng and R. A. Huggins, Solid State Ionics, 1984, 11, 271 CrossRef CAS.
  20. G. Meng, W. Cao and D. Peng, Solid State Ionics, 1986, 18&19, 732 CrossRef CAS.
  21. H. Eyring, J. Chem. Phys., 1935, 3, 107 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.