A novel class of phenol–pyridine co-crystals for second harmonic generation

(Note: The full text of this document is currently only available in the PDF Version )

Kin-Shan Huang, Doyle Britton, the late Margaret C. Etter and Stephen R. Byrn


Abstract

To test the approach of combining both ionic and hydrogen-bonding interactions for the design of non-linear optical (NLO) materials, a number of phenol–pyridine co-crystals have been synthesized and their NLO properties investigated. The co-crystals are characterized by second harmonic generation measurements as well as the more conventional methods of melting point measurements, infrared and nuclear magnetic resonance spectroscopy. To investigate whether the phenol co-crystals are organic salts, the 2-methoxy-4-nitrophenol–4-(dimethylamino)pyridine (2:1) co-crystal 6 and the 2-methoxy-4-nitrophenol–4-pyrrolidinylpyridine–water (1:1:1) co-crystal 8 are further characterized by X-ray single-crystal diffraction. Crystal structure analyses reveal that both 6 and 8 are ionic co-crystals (or organic salts) composed of a phenoxide anion, a pyridinium cation and a neutral molecule. In the two co-crystals, the phenoxide, pyridinium and neutral molecules are held together by ionic attractions as well as hydrogen-bonding interactions. Both 6 and 8 crystallize in non-centrosymmetric structures [Pna21 (orthorhombic), a=6.880(4), b=38.40(1), c=8.454(3) Å, Z=4, Dc=1.369 g cm-3 and R=0.051 for 6 and Cc (monoclinic), a=7.302(3), b=23.518(2), c=9.940(1) Å, β=107.12(2)°, Z=4, Dc=1.365 g cm-3 and R=0.036 for 8]. In addition to X-ray structure determination, it is possible to predict whether phenol–pyridine co-crystals are organic salts based on the ΔpKa [pKa(pyridine)-pKa(phenol)] and stoichiometric ratio of the co-crystals. Preliminary results suggest that this type of co-crystals, particularly for the ionic co-crystals, may have a higher chance of forming non-centrosymmetric structures than the normal achiral organic compounds.


References

  1. Materials for Nonlinear Optics, ed. S. R. Marder, J. E. Sohn and G. D. Stucky, ACS Symp. Ser., 1991, 455 Search PubMed.
  2. D. J. Williams, Angew. Chem., Int. Ed. Engl., 1984, 23, 690 Search PubMed.
  3. R. Rytel, G. F. Lipscomb, M. Stiller, J. Thackara and A. T. Ticknor, in Nonlinear Optical Effects in Organic Polymers, ed. J. Messier, F. Kajzar, P. Prasad and D. Ulrich, Kluwer Academic Publishers, Dordrecht, 1988, pp. 277–289 Search PubMed.
  4. J. Zyss and J. L. Oudar, Phys. Rev., 1982, A26, 2016 Search PubMed.
  5. R. J. Twieg and K. Jain, in Nonlinear Optical Properties of Organic and Polymeric Materials, ed. D. J. Williams, ACS Symp. Ser., 1983, 233, 57 Search PubMed.
  6. I. C. Paul and D. Y. Curtin, Acc. Chem. Res., 1973, 7, 223 Search PubMed.
  7. G. R. Meredith, in Nonlinear Optical Properties of Organic and Polymeric Materials, ed. D. J. Williams, ACS Symp. Ser., 1983, 233, 27 Search PubMed.
  8. S. R. Marder, J. W. Perry and W. P. Schaefer, Science, 1989, 245, 626 Search PubMed.
  9. J. Zyss and G. Berthier, J. Chem. Phys., 1982, 77, 3635 Search PubMed.
  10. T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson and M. C. Etter, J. Am. Chem. Soc., 1987, 109, 7786 Search PubMed.
  11. M. C. Etter and G. M. Frankenbach, Chem. Mater., 1989, 1, 10 Search PubMed.
  12. C. B. Aakeroy, P. B. Hitchcock, B. D. Moyle and K. R. Seddon, J. Chem. Soc., Chem. Commun., 1989, 1856 Search PubMed.
  13. S. Kurtz and T. T. Perry, J. Appl. Phys., 1968, 39, 3798 Search PubMed.
  14. J. P. Wibaut and F. W. Broekman, Recl. Trav. Chim. Pays-Bas, 1961, 80, 309 Search PubMed.
  15. N. Walker and D. Stuart, Acta Crystallogr., 1983, A39, 158 Search PubMed.
  16. C. J. Gilmore, J. Appl. Crystallogr., 1984, 17, 42 Search PubMed.
  17. P. T. Beurskens, DIRDIF, an Automatic Procedure for Phase Extension and Refinement of Difference Structure Factors, Technique Report 1984/1, Crystallography Laboratory, Toernooiveld, The Netherlands, 1984.
  18. R. Steward, E. R. Davison and W. T. Simpson, International Table for X-ray Crystallography, Kynoch Press, Birmingham, 1974, vol. IV, pp. 202–207 Search PubMed.
  19. TEXSAN, TEXRAY Structure Analysis Package, Molecular Structure Corporation, 3200A Research Forest Drive, The Woodlands, TX 77381, USA, 1985.
  20. L. J. Bellamy, in The Infrared Spectra of Complex Molecules, Chapman and Hall, New York, vol. 2, 1980 Search PubMed.
  21. R. J. Taylor and O. Kennard, Acc. Chem. Res., 1984, 17, 320 Search PubMed.
  22. A. Novak, Struct. Bonding (Berlin), 1974, 18, 177 Search PubMed.
  23. S. L. Johnson and K. A. Rumon, J. Phys. Chem., 1965, 69, 74 Search PubMed.
  24. D. D. Perrin, B. Dempsey and E. P. Serjeant, in pKa prediction for Organic Acids and Bases, Chapman and Hall, New York, 1981 Search PubMed.
  25. M. C. Etter and K. S. Huang, Chem. Mater., 1992, 4, 824 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.