Chemically bonded silica–polymer composites from linear and branched polyamides in a sol–gel process

(Note: The full text of this document is currently only available in the PDF Version )

Zahour Ahmad, M. I. Sarwar and James E. Mark


Abstract

A new type of polymer–silica composite based on aramids of either linear or non-linear structure has been prepared successfullyvia the sol–gel process. The linear polyamide chains were prepared by the reaction of a mixture of m-phenylene and p-phenylene diamines and terephthaloyl chloride in dimethylacetamide. The non-linear (branched) polyamide chains (having an increased number of reactive ends) were synthesized using 1,3,5-benzenetricarbonyl chloride and terephthaloyl chloride to increase the mass average functionality of the monomer. A slight excess of acid chloride was added in both cases to produce amide chains with carbonyl chloride end groups, which permitted the chains to be end-capped with aminophenyltrimethoxysilane. Addition of tetramethoxysilane to a solution of the polymer, and its subsequent hydrolysis and condensation produced a silica network phase chemically bonded to the aramid chains. Films thus produced were yellow, and transparent for concentrations of silica of up to 25 mass%. Tensile strengths increased gradually with increasing silica content up to this same concentration, but then decreased significantly. The overall values of the strength were found to be smaller for the non-linear aramid chains, relative to those of the linear, possibly because of the branches interfering with interchain interactions. Nonetheless, the increases in the tensile strength with increasing inorganic network phase were larger for the non-linear polymer, consistent with the goal of increasing the bonding between the organic and inorganic phases by increasing the number of amidophenyltrimethoxysilane chain ends. Increasing these strengths to values greater than those for the linear chains can probably be achieved by having the branched regions only near the ends of the chains. Since these transparent ceramers were found to withstand tensile stresses of the order of 175 MPa and had thermal decomposition temperatures around 460–475 °C, they may be very useful as matrices for fibre-reinforced composites.


References

  1. P. E. Cassidy, Thermally Stable Polymers, Marcel Dekker, New York, 1980 Search PubMed.
  2. J. P. Crichley, G. J. Knight and W. W. Wright, Heat Resistant Polymers, Plenum Press, New York, 1983 Search PubMed.
  3. J. F. Wolfe, in Encyclopedia of Polymer Science and Engineering, ed. H. F. Mark, N. M. Bikales, C. G. Overberger and G. Menges, Wiley-Interscience, New York, 1987, p. 635 Search PubMed.
  4. C. J. Brinker and G. W. Scherer, Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing, Academic Press, Boston, 1990 Search PubMed.
  5. Ultrastructure Processing of Advanced Materials, ed. D. R. Uhlman and D. R. Ulrich, Wiley, New York, 1992 Search PubMed.
  6. Submicron Multiphase Materials, ed. R. H. Baney, L. R. Gilliom, S-I. Hirano and H. K. Schmidt, Mater. Res. Soc. Symp. Proc., Materials Research Society, Pittsburgh, PA, 1992, vol. 274 Search PubMed.
  7. Better Ceramics Through Chemistry V, ed. M. J. Hampden-Smith, W. G. Klemperer and C. J. Brinker, Mater. Res. Soc. Symp. Proc., Materials Research Society, Pittsburgh, PA, 1992, vol. 271 Search PubMed.
  8. Chemical Processing of Advanced Materials, ed. L. L. Hench and J. K. West, Wiley, New York, 1992 Search PubMed.
  9. Proceedings of the Firsteuropean Workshop on Hybrid Organic-Inorganic Materials, ed. C. Sanchez and F. Ribot, Chimie de la Matiere Condensee, Chateau de Bierville, France, 1993 Search PubMed.
  10. Better Ceramics Through Chemistry VI, ed. A. Cheetham, C. J. Brinker, M. L. Mecartney and C. Sanchez, Mater. Res. Soc. Symp. Proc., Materials Research Society, Pittsburgh, PA, 1994, vol. 346 Search PubMed.
  11. Sol-Gel Optics, ed. L. C. Klein, Kluwer Academic Publishers, Boston, 1994 Search PubMed.
  12. Hybrid Organic-Inorganic Composites, ed. J. E. Mark, C. Y.-C. Lee and P. A. Bianconi, ACS Symp. Ser., American Chemical Society, Washington, DC, 1995, vol. 585 Search PubMed.
  13. J. E. Mark, Heterocycl. Chem. Rev., 1996, 2 Search PubMed in press.
  14. J. E. Mark, Polym. Eng. Sci., 1996, 36 Search PubMed in press.
  15. C. J. T. Landry, B. K. Coltrain, J. A. Wesson, N. Zumbulyadis and J. L. Lippert, Polymer, 1992, 33, 1496 CrossRef CAS.
  16. S. Wang, Z. Ahmad and J. E. Mark, Polym. Bull., 1993, 31, 323 CrossRef CAS.
  17. Z. Ahmad, S. Wang and J. E. Mark, in Better Ceramics Through Chemistry VI, ed. A. Cheetham, C. J. Brinker, M. L. Mecartney and C. Sanchez, Mater. Res. Soc. Symp. Proc., Materials Research Society, Pittsburgh, PA, 1994, vol. 346, p. 127 Search PubMed.
  18. J. E. Mark, S. Wang and Z. Ahmad, Macromol. Symp., 1995, 98, 731 CAS.
  19. Z. Ahmad, S. Wang and J. E. Mark, in Hybrid Organic-Inorganic Composites, ed. J. E. Mark, C. Y.-C. Lee and P. A. Bianconi, ACS Symp. Ser., American Chemical Society, Washington, DC, 1995, vol. 585, p. 291 Search PubMed.
  20. L. Mascia and A. Kioul, J. Mater. Sci. Lett., 1994, 13, 641 CrossRef CAS.
  21. M. Spinu, A. B. Brennan, J. Rancourt, G. L. Wilkes and J. E. McGrath, in Multi-Functional Materials, ed. D. R. Ulrich, F. E. Karasz, A. J. Buckley and G. Gallagher-Daggitt, Mater. Res. Soc. Symp. Proc., Materials Research Society, Pittsburgh, PA, 1990, vol. 175, p. 179 Search PubMed.
  22. M. Nandi, J. A. Conklin, J. L. Salvati and A. Sen, Chem. Mater., 1991, 3, 201 CrossRef CAS.
  23. K. Yano, A. Usuki, A. Okada, T. Kurauchi and O. Kamigaito, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1991, 32, 65 Search PubMed.
  24. F. Breval, M. L. Mulvihill, J. P. Dougherty and R. E. Newham, J. Mater. Sci., 1992, 27, 3297.
  25. A. Morikawa, Y. Iyoku, M. Kakimoto and Y. Imai, J. Mater. Chem., 1992, 2, 679 RSC.
  26. A. Morikawa, Y. Iyoku, M. Kakimoto and Y. Imai, Polym J., 1992, 24, 107 Search PubMed.
  27. R. J. Jeng, Y. M. Chen, A. K. Jain, J. Kumar and S. K. Tripathy, Chem. Mater., 1992, 4, 1141 CrossRef CAS.
  28. J. J. Burgmeister and L. T. Taylor, Chem. Mater., 1992, 4, 729 CrossRef.
  29. S. Marturunkakul, J. I. Chen, R. J. Jeng, S. Sengupta, J. Kumar and S. K. Tripathy, Chem. Mater., 1993, 6, 743 CrossRef.
  30. K. Yano, A. Usuki, A. Okada, T. Kurauchi and O. Kamigaito, J. Polym. Sci., Polym. Chem. Ed., 1993, 32, 625.
  31. L. Mascia and A. Kioul, J. Mater. Sci. Lett., 1994, 13, 641 CrossRef CAS.
  32. X. Chen, K. E. Gonsalves, G.-M. Chow and T. D. Xiao, Adv. Mater., 1994, 6, 481 CrossRef CAS.
  33. S. Wang, Z. Ahmad and J. E. Mark, J. Macromol. Sci., Macromol. Rep., 1994, 31, 411 Search PubMed.
  34. S. Wang, Z. Ahmad and J. E. Mark, Chem. Mater., 1994, 6, 943 CrossRef CAS.
  35. L. Mascia and A. Kioul, Polymer, 1995, 36, 3649 CrossRef CAS.
  36. R. F. Kovar and R. W. Lusignea, in Ultrastructure Processing of Advanced Ceramics, ed. J. D. Mackenzie and D. R. Ulrich, Wiley-Interscience, New York, 1988, p. 715 Search PubMed.
  37. R. F. Kovar, R. W. Lusignea, R. A. Griffiths and E. L. Thomas, in Chemical Processing of Advanced Materials, ed. L. L. Hench and J. K. West, Wiley, New York, 1992, p. 685 Search PubMed.
  38. S. A. Jenekhe and J. A. Osaheni, Chem. Mater., 1994, 6, 1906 CrossRef CAS.
  39. J. P. Chen, Z. Ahmad, S. Wang, J. E. Mark and F. E. Arnold, in Hybrid Organic-Inorganic Composites, ed. J. E. Mark, C. Y.-C. Lee and P. A. Bianconi, ACS Symp. Ser., American Chemical Society, Washington, DC, 1995, vol. 585, p. 297 Search PubMed.
  40. T. D. Dang, J. P. Chen and F. E. Arnold, in Hybrid Organic-Inorganic Composites, ed. J. E. Mark, C. Y.-C. Lee and P. A. Bianconi, ACS Symp. Ser., American Chemical Society, Washington, DC, 1995, vol. 585, p. 297 Search PubMed.
  41. J. Premachandra, C. Kumudinie, W. Zhao, J. E. Mark, T. D. Dang, J. P. Chen and F. E. Arnold, J. Sol-Gel Sci. Technol., 1996, 6 Search PubMed in press.
  42. J. E. Mark, J. Premachandra, C. Kumudinie, W. Zhao, T. D. Dang, J. P. Chen and F. E. Arnold, in Better Ceramics Through Chemistry VII. Organic-Inorganic Hybrid Materials, Mater. Res. Soc. Symp. Proc., Materials Research Society, Pittsburgh, PA, 1996 Search PubMed.
  43. P. W. Morgan, J. Polym. Sci. Part C, 1963, 4, 1075 Search PubMed.
  44. F. Higassui, S. I. Ogata and Y. Aokai, J. Polym. Sci., Polym. Chem. Ed., 1982, 20, 2085.
Click here to see how this site uses Cookies. View our privacy policy here.