A theoretical examination of the molecular packing, intermolecular bondingand crystal morphology of 2,4,6-trinitrotoluene in relation to polymorphicstructural stability

(Note: The full text of this document is currently only available in the PDF Version )

Hugh G. Gallagher, Kevin J. Roberts, John N. Sherwood and Lorna A. Smith


Abstract

2,4,6-Trinitrotoluene (TNT) can crystallise in both monoclinic and orthorhombic polymorphic forms characterised by two distinct molecular packing configurations in the solid-state associated with two conformationally unique molecules (A and B) in the asymmetric unit with four asymmetric units in the unit cell. In this the centrosymmetric monoclinic (pseudob-glide) structure (P21 /c) adopts an AABBAABB packing motif and the orthorhombic (pseudo-centrosymmetric structure Pb21a) adopts an ABABABAB packing motif. The close molecular similarity between the conformations of the A and B molecules also gives rise to twinning in the monoclinic phase due to defects in the stacking sequence. The two molecular structures differ in the degree to which the 2,4,6 nitro groups are twisted out of the plane of the benzene ring and there are also subtle differences in the molecular conformation of the two molecular types between the two polymorphs. Lattice energy calculations based on the solved structures reflect the similarity of the packing sequences, suggesting a relative stability of monoclinic>twinned monoclinic>orthorhombic in agreement with experimental studies. The small energy difference between the twinned and non-twinned monoclinic polymorphs explains the abundance of twinning in TNT. Attachment energy calculations predict needle-like crystal morphologies with a plate-like cross-section.


References

  1. J. A. R. P. Sarma and G. R. Desiraju, J. Chem. Soc., Perkin Trans. 2, 1987, 1187 RSC.
  2. W. Jones, C. R. Theocharis, J. M. Thomas and G. R. Desiraju, J. Chem. Soc., Chem Commun., 1983, 1443 RSC.
  3. M. C. Etter, R. B. Kress, J. Bernstein and D. J. Cash, J. Am. Chem Soc., 1984, 106, 6921 CrossRef CAS.
  4. A. Gavezzotti and G. Filippini, J. Am. Chem. Soc., 1995, 117, 12299 CrossRef CAS.
  5. V. Benghiat and L. Leiserowitz, J. Chem. Soc., 1972, 1763 Search PubMed.
  6. J. D. Dunitz and J. Bernstein, Acc. Chem. Res., 1995, 28, 193 CrossRef CAS.
  7. G. Desiraju, Crystal Engineering, the Design of Organic Solids, Mater. Sci. Monogr., 54, Elsevier, Amsterdam, 1989 Search PubMed.
  8. L. A. Errede, M. C. Etter, R. C. Williams and S. M. Darnauer, J. Chem. Soc., Perkin Trans. 2, 1981, 233 RSC.
  9. J. Bernstein, I. Bar and A. Christensen, Acta Crystallogr., Sect. B, 1976, 32, 1609 CrossRef.
  10. I. Bar and J. Bernstein, Acta Crystallogr., Sect. B, 1977, 33, 1738 CrossRef.
  11. I. Bar and J. Bernstein, Acta Crystallogr., Sect. B, 1982, 38, 121 CrossRef.
  12. J. Bernstein, M. Engel and A. T. Hagler, J. Chem. Phys., 1981, 75, 2346 CrossRef CAS.
  13. L. A. Burkardt and J. H. Bryden, Acta Crystallogr., 1954, 1, 135 CrossRef CAS.
  14. J. R. C. Duke, 1981, unpublished work.
  15. P. Freidlander, Z. Kristallogr., 1879, 3, 169 Search PubMed.
  16. E. Hertel and G. Römer, Z. Phys. Chem. B, 1930, 2, 77 Search PubMed.
  17. R. Hullgren, J. Chem. Phys., 1936, 4, 84 CrossRef.
  18. E. Artini, R. C. Acad. Lincei, 1915, 24, 274 Search PubMed.
  19. W. C. McCrone, Anal. Chem., 1949, 21, 1583 CrossRef.
  20. H. G. Gallagher and J. N. Sherwood, The Influence of Lattice Imperfections on the Chemical Reactivity of Solids: The Growth and Purification of TNT Single Crystals., Avail. NTVS. Gov. Rep. Announce. Index (NS), 1984, 84, 83 Search PubMed.
  21. H. G. Gallagher and J. N. Sherwood, The Growth and Purification of Single Crystals of TNT, Mater. Res. Soc. Symp. Proc., 1993, 296, 215 Search PubMed.
  22. H. G. Gallagher and J. N. Sherwood, J. Chem. Soc., Faraday Trans., 1996, 92, 2107 RSC.
  23. P. Bladon and R. Breckinridge, INTERCHEM, University of Strathclyde, UK, 1986.
  24. R. Docherty, PhD Thesis, Strathclyde University, 1989.
  25. R. Buckingham and J. Corner, Proc. R. Soc. London, 1947, 189, 118 Search PubMed.
  26. G. Nemethy, M. S. Pottle and H. A. Scheraga, J. Phys. Chem., 1983, 87, 1883 CrossRef CAS.
  27. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy and J. J. P. Stewart, J. Am. Chem. Soc., 1985, 107, 3902 CrossRef.
  28. J. J. P. Stewart, J. Comput.-Aided Mol. Design, 1990, 4, 1 Search PubMed.
  29. G. Clydesdale, R. Docherty and K. J. Roberts, Comput. Phys. Commun., 1991, 64, 311 CrossRef CAS.
  30. G. Clydesdale, R. Docherty and K. J. Roberts, QCPE Program No. 670, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana, USA.
  31. G. Clydesdale, R. Docherty and K. J. Roberts, Proc. Conf. Crystal Growth Organic Materials, ed. A. S. Myerson, D. A. Green and P. MeenenWashington, DC, 1995 Search PubMed; J. Crystal Growth, 1996, 166, 78 Search PubMed.
  32. F. A. Momany, R. F. McGuire, A. W. Burgess and H. A. Scheraga, J. Phys. Chem., 1975, 79, 2361 CrossRef CAS.
  33. S. Lifson, A. T. Hagler and P. Dauber, J. Am. Chem. Soc., 1979, 101, 5111 CrossRef CAS.
  34. D. E. Williams, J. Chem. Phys., 1966, 45, 3370 CrossRef.
  35. A. Bravais, Etudes Crystallographiques, Paris, 1913 Search PubMed.
  36. G. Freidel, Bull. Soc. Fr. Mineral., 1907, 30, 326 Search PubMed.
  37. J. D. H. Donnay and D. Harker, Am. Mineral., 1937, 22, 463.
  38. J. R. Holden, C. Dickinson and C. M. Bock, J. Phys. Chem., 1972, 76, 3597 CrossRef CAS.
  39. C. Dickinson, J. M. Stewart and J. R. Holden, Acta Crystallogr., 1966, 21, 663 CrossRef CAS.
  40. W. R. Carper, L. P. Davis and M. W. Extine, J. Phys. Chem., 1982, 86, 459 CrossRef CAS.
  41. G. Edwards, Trans. Faraday Soc., 1950, 46, 423 RSC.
  42. C. Lenchitz and R. W. Velidly, J. Chem. Eng. Data, 1920, 15, 3, 401.
  43. D. G. Graber, F. C. Rauch and A. J. Fanelli, J. Phys. Chem., 1969, 73, 3514 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.