EXAFS analysis of the structural evolution of gel-formed La2O3

(Note: The full text of this document is currently only available in the PDF Version )

Fatima Ali, Alan V. Chadwick and Mark E. Smith


Abstract

Sol–gel-produced La2O3 , derived from the hydrolysis and subsequent calcination of lanthanum isopropoxide, has been investigated by EXAFS of the La LIII edge. The evolution of the local structure through a series of amorphous intermediate states has been modelled by three shells, two lanthanum–oxygen and the other lanthanum–lanthanum. For comparison, well characterised bulk La(OH)3 , LaO(OH) and La2O3 were examined using EXAFS. The sol–gel-prepared oxide was more disordered and had significantly smaller particles than the oxide prepared by calcination of La2(CO3)3 after the same heat treatments. For the gels in the intermediate states, well defined La–O shells are seen but the La–La shells are characterised by large Debye–Waller factors. Comparison of these results with previous 17O solid-state NMR on a similar set of samples has some significant implications for the sensitivity to disorder of these important atomic-scale probes.


References

  1. R. Birringer, H. Hahn, H. Hoefler, J. Karch and H. Gleiter, Defect and Diff usion Forum, 1988, 59, 17 Search PubMed.
  2. D. C. Koningsberger and R. Prins, X-Ray Absorption, Wiley, London, 1988 Search PubMed.
  3. S. J. Gurman, in Applications of Synchrotron Radiation, ed. C. R. A. Catlow and G. N. Greaves, Blackie, London, 1993, p. 140 Search PubMed; A. V. Chadwick, in Applications of Synchrotron Radiation, ed. C. R. A. Catlow and G. N. Greaves, Blackie, London, 1993, p. 171 Search PubMed.
  4. K. D. Campbell, H. Zhang and J. H. Lunsford, J. Phys. Chem., 1988, 92, 750 CrossRef CAS.
  5. Z. Kalinek and E. E. Wolf, Catal. Lett., 1991, 9, 441 CrossRef.
  6. S. J. Milne, R. J. Brook and Y. S. Zhen, Br. Ceram. Proc., 1989, 41, 243 Search PubMed.
  7. F. Ali, M. E. Smith, S. Steuernagel and H. J. Whitfield, J. Mater. Chem., 1996, 6, 261 RSC.
  8. P. Malet, M. J. Captian, M. A. Centano, J. A. Odriozola and I. Carrizoa, J. Chem. Soc., Faraday Trans., 1994, 90, 2783 RSC.
  9. A. V. Chadwick, G. Morrison and R. Rafiuddin, Radiat. Effects Defects Solids, 1995, 134, 91 Search PubMed.
  10. R. M. Almeida, M. I. Marques and M. C. Goncalves, J. Non-Cryst. Solids., 1994, 168, 144 CrossRef CAS.
  11. E. M. Larson, A. J. G. Ellison, F. W. Lytle, A. Navrotsky, R. B. Greegor and J. Wong, J. Non-Cryst. Solids, 1990, 130, 260 CrossRef.
  12. S. Benazeth, M. H. Tuiler, A. M. Loireau-Lozac, H. Dexpert, P. Lagarde and J. Flattaut, J. Non-Cryst. Solids, 1989, 110, 89 CrossRef CAS.
  13. F. J. Berry, S. Greaves and R. C. Lobo, J. Chem. Soc., Faraday Trans., 1991, 87, 1405 RSC.
  14. SERC Daresbury Program Library, 1991.
  15. N. Binsted, J. W. Campbell, S. J. Gurman and P. C. Stephenson, SERC Daresbury Program Library, 1992.
  16. D. J. Illet and M. S. Islam, J. Chem. Soc., Faraday Trans., 1993, 89, 3833 RSC.
  17. W. H. Zaichariasen, Acta Crystallogr., 1948, 1, 265 CrossRef CAS.
  18. G. W. Beall, W. O. Milligan and H. A. Wolcott, J. Inorg. Nucl. Chem., 1977, 39, 65 CrossRef CAS.
  19. P. V. Klevsov and L. P. Sheina, Akad. Nauk SSSR Neorg. Mater., 1965, 1, 2219 Search PubMed.
  20. R. Nitsche, M. Winterer, M. Croft and H. Hahn, Nucl. Instrum. Methods Phys. Res. Sect. B, 1995, 97, 127 CrossRef CAS.
  21. G. J. Baker, G. N. Greaves, M. Surman and M. Oversluizen, Nuclear Instrum. Methods Phys. Res., Sect. B, 1995, 97, 375 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.