Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion

(Note: The full text of this document is currently only available in the PDF Version )

Toshiki Tsubota, Michitaka Ohtaki, Koichi Eguchi and Hiromichi Arai


Abstract

The thermoelectric properties of a mixed oxide (Zn1-xAlx)O (x=0, 0.005, 0.01, 0.02, 0.05) are investigated in terms of materials for high-temperature thermoelectric conversion. The electrical conductivity, σ, of the oxide increases on Al-doping by more than three orders of magnitude up to ca. 103 S cm-1 at room temperature, showing metallic behaviour. The Seebeck coefficient, S, of (Zn1-xAlx)O (x>0) shows a general trend in which the absolute value increases gradually from ca. -100 µV K-1 at room temperature to ca. -200 µV K-1 at 1000 °C. As a consequence, the power factor, S2σ, reaches ca. 15×10-4 W m-1 K-2 , the largest value of all reported oxide materials. The thermal conductivity, κ, of the oxide decreases with increasing temperature, owing to a decrease in the lattice thermal conductivity which is revealed to be dominant in the overall κ. In spite of the considerably large values of κ, the figure of merit, Z=S2σ/κ, reaches 0.24×10-3 K-1 for (Zn0.98Al0.02 )O at 1000 °C. The extremely large power factor of (Zn1-xAlx)O compared to other metal oxides can be attributed to the high carrier mobility revealed by the Hall measurements, presumably resulting from a relatively covalent character of the Zn–O bond owing to a fairly small difference of the electronegativities of Zn and O. The dimensionless figure of merit,ZT, of 0.30 attained by (Zn0.98Al0.02 )O at 1000 °C demonstrates the potential usefulness of the oxide.


References

  1. C. M. Bhandari and D. M. Rowe, Contemp. Phys., 1980, 21, 219 CAS.
  2. J. C. Bass and N. B. Elsner, in Proc. 3rd Int. Conf. Thermoelec. Energy Conv., ed. K. R. Rao, IEEE, New York, 1980, p. 8 Search PubMed.
  3. J. F. Nakahara, T. Takeshita, M. J. Tschetter, B. J. Beaudry and K. A. Gschneidner Jr., J. Appl. Phys., 1988, 63, 2331 CrossRef CAS.
  4. I. Nishida, Phys. Rev. B, 1973, 7, 2710 CrossRef CAS.
  5. I. Nishida and T. Sakata, J. Phys. Chem. Solids, 1978, 39, 499 CrossRef CAS.
  6. T. Kojima, Phys. Status Solidi A, 1989, 111, 233 CAS.
  7. C. Wood and D. Emin, Phys. Rev. B, 1984, 29, 4582 CrossRef CAS.
  8. S. Yugo, T. Sato and T. Kimura, Appl. Phys. Lett., 1985, 46, 842 CrossRef CAS.
  9. W. J. Macklin and P. T. Moseley, Mater. Sci. Eng. B, 1990, 7, 111 Search PubMed.
  10. T. O. Mason, Mater. Sci. Eng. B, 1991, 10, 257 Search PubMed.
  11. W. J. Macklin and P. T. Moseley, Mater. Sci. Eng. B, 1991, 10, 260 Search PubMed.
  12. C. G. Fonstad and R. H. Rediker, J. Appl. Phys., 1971, 42, 2911 CrossRef.
  13. T. P. Pearsall and C. A. Lee, Phys. Rev. B, 1974, 10, 2190 CrossRef CAS.
  14. M. Ohtaki, D. Ogura, K. Eguchi and H. Arai, J. Mater. Chem., 1994, 4, 653 RSC.
  15. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi and H. Arai, J. Solid State Chem., 1995, 120, 105 CrossRef CAS.
  16. S. J. Jung, H. Ohsawa, Y. Nakamura, K. Hasumi and O. Okada, J. Electrochem. Soc., 1994, 141, L53 CAS.
  17. S. N. Bai and T. Y. Tseng, J. Appl. Phys., 1993, 74, 695 CrossRef CAS.
  18. M. Ohtaki, T. Tsubota, K. Eguchi and H. Arai, J. Appl. Phys., 1996, 79, 1816 CrossRef CAS.
  19. K. Koumoto, M. Shimohigasi, S. Takeda and H. Yanagida, J. Mater. Sci. Lett., 1987, 6, 1453 CAS.
  20. G. Heiland, E. Mollwo and F. Stuöckmann, Solid State Phys., 1959, 8, 191 Search PubMed.
  21. M. Nakamura, N. Kimizuka, T. Mohri and M. Isobe, J. Solid State Chem., 1993, 105, 535 CrossRef CAS.
  22. J. W. Akitt, in Multinuclear NMR, ed. J. Mason, Plenum Press, New York, 1987, p. 259 Search PubMed.
  23. B. C. Gerstein, Anal. Chem., 1983, 55, 781A CAS.
  24. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Limited, London, 1957 Search PubMed.
  25. R. P. Chasmer and R. J. Stratton, J. Electron. Control, 1959, 7, 52 Search PubMed.
  26. T. Caillat, A. Borshchevsky and J.-P. Fleurial, in Proc. 13th Int. Conf. Thermoelectrics, 1994, ed. B. Mathiprakasem, ALP Press, New York, p. 58 Search PubMed.
  27. T. Caillat, A. Borshchevsky and J.-P. Fleurial, in Proc. 13th Int. Conf. Thermoelectrics, ed. B. Mathiprakasem, ALP Press, New York, 1994, p. 31 Search PubMed.
  28. T. Caillat, A. Borshchevsky and J.-P. Fleurial, in Proc. 13th Int. Conf. Thermoelectrics, 1994, ed. B. Mathiprakasem, ALP Press, New York, p. 209 Search PubMed.
  29. J. C. Phillips, Rev. Mod. Phys., 1970, 42, 317 CrossRef.
  30. C. Kittel, Introduction to Solid State Physics, 6th edn., Wiley, New York, 1986 Search PubMed.
  31. M. E. Fine and N. Hsieh, J. Am. Ceram. Soc., 1974, 57, 502 CAS.