Thermoelectric properties of Al-doped ZnO as a promising oxide material for high-temperature thermoelectric conversion

(Note: The full text of this document is currently only available in the PDF Version )

Toshiki Tsubota, Michitaka Ohtaki, Koichi Eguchi and Hiromichi Arai


Abstract

The thermoelectric properties of a mixed oxide (Zn1-xAlx)O (x=0, 0.005, 0.01, 0.02, 0.05) are investigated in terms of materials for high-temperature thermoelectric conversion. The electrical conductivity, σ, of the oxide increases on Al-doping by more than three orders of magnitude up to ca. 103 S cm-1 at room temperature, showing metallic behaviour. The Seebeck coefficient, S, of (Zn1-xAlx)O (x>0) shows a general trend in which the absolute value increases gradually from ca. -100 µV K-1 at room temperature to ca. -200 µV K-1 at 1000 °C. As a consequence, the power factor, S2σ, reaches ca. 15×10-4 W m-1 K-2 , the largest value of all reported oxide materials. The thermal conductivity, κ, of the oxide decreases with increasing temperature, owing to a decrease in the lattice thermal conductivity which is revealed to be dominant in the overall κ. In spite of the considerably large values of κ, the figure of merit, Z=S2σ/κ, reaches 0.24×10-3 K-1 for (Zn0.98Al0.02 )O at 1000 °C. The extremely large power factor of (Zn1-xAlx)O compared to other metal oxides can be attributed to the high carrier mobility revealed by the Hall measurements, presumably resulting from a relatively covalent character of the Zn–O bond owing to a fairly small difference of the electronegativities of Zn and O. The dimensionless figure of merit,ZT, of 0.30 attained by (Zn0.98Al0.02 )O at 1000 °C demonstrates the potential usefulness of the oxide.


References

  1. C. M. Bhandari and D. M. Rowe, Contemp. Phys., 1980, 21, 219 CAS .
  2. J. C. Bass and N. B. Elsner, in Proc. 3rd Int. Conf. Thermoelec. Energy Conv., ed. K. R. Rao, IEEE, New York, 1980, p. 8 Search PubMed .
  3. J. F. Nakahara, T. Takeshita, M. J. Tschetter, B. J. Beaudry and K. A. Gschneidner Jr., J. Appl. Phys., 1988, 63, 2331 CrossRef CAS .
  4. I. Nishida, Phys. Rev. B, 1973, 7, 2710 CrossRef CAS .
  5. I. Nishida and T. Sakata, J. Phys. Chem. Solids, 1978, 39, 499 CrossRef CAS .
  6. T. Kojima, Phys. Status Solidi A, 1989, 111, 233 CAS .
  7. C. Wood and D. Emin, Phys. Rev. B, 1984, 29, 4582 CrossRef CAS .
  8. S. Yugo, T. Sato and T. Kimura, Appl. Phys. Lett., 1985, 46, 842 CrossRef CAS .
  9. W. J. Macklin and P. T. Moseley, Mater. Sci. Eng. B, 1990, 7, 111 Search PubMed .
  10. T. O. Mason, Mater. Sci. Eng. B, 1991, 10, 257 Search PubMed .
  11. W. J. Macklin and P. T. Moseley, Mater. Sci. Eng. B, 1991, 10, 260 Search PubMed .
  12. C. G. Fonstad and R. H. Rediker, J. Appl. Phys., 1971, 42, 2911 CrossRef .
  13. T. P. Pearsall and C. A. Lee, Phys. Rev. B, 1974, 10, 2190 CrossRef CAS .
  14. M. Ohtaki, D. Ogura, K. Eguchi and H. Arai, J. Mater. Chem., 1994, 4, 653 RSC .
  15. M. Ohtaki, H. Koga, T. Tokunaga, K. Eguchi and H. Arai, J. Solid State Chem., 1995, 120, 105 CrossRef CAS .
  16. S. J. Jung, H. Ohsawa, Y. Nakamura, K. Hasumi and O. Okada, J. Electrochem. Soc., 1994, 141, L53 CAS .
  17. S. N. Bai and T. Y. Tseng, J. Appl. Phys., 1993, 74, 695 CrossRef CAS .
  18. M. Ohtaki, T. Tsubota, K. Eguchi and H. Arai, J. Appl. Phys., 1996, 79, 1816 CrossRef CAS .
  19. K. Koumoto, M. Shimohigasi, S. Takeda and H. Yanagida, J. Mater. Sci. Lett., 1987, 6, 1453 CAS .
  20. G. Heiland, E. Mollwo and F. Stuöckmann, Solid State Phys., 1959, 8, 191 Search PubMed .
  21. M. Nakamura, N. Kimizuka, T. Mohri and M. Isobe, J. Solid State Chem., 1993, 105, 535 CrossRef CAS .
  22. J. W. Akitt, in Multinuclear NMR, ed. J. Mason, Plenum Press, New York, 1987, p. 259 Search PubMed .
  23. B. C. Gerstein, Anal. Chem., 1983, 55, 781A CAS .
  24. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling, Infosearch Limited, London, 1957 Search PubMed .
  25. R. P. Chasmer and R. J. Stratton, J. Electron. Control, 1959, 7, 52 Search PubMed .
  26. T. Caillat, A. Borshchevsky and J.-P. Fleurial, in Proc. 13th Int. Conf. Thermoelectrics, 1994, ed. B. Mathiprakasem, ALP Press, New York, p. 58 Search PubMed .
  27. T. Caillat, A. Borshchevsky and J.-P. Fleurial, in Proc. 13th Int. Conf. Thermoelectrics, ed. B. Mathiprakasem, ALP Press, New York, 1994, p. 31 Search PubMed .
  28. T. Caillat, A. Borshchevsky and J.-P. Fleurial, in Proc. 13th Int. Conf. Thermoelectrics, 1994, ed. B. Mathiprakasem, ALP Press, New York, p. 209 Search PubMed .
  29. J. C. Phillips, Rev. Mod. Phys., 1970, 42, 317 CrossRef .
  30. C. Kittel, Introduction to Solid State Physics, 6th edn., Wiley, New York, 1986 Search PubMed .
  31. M. E. Fine and N. Hsieh, J. Am. Ceram. Soc., 1974, 57, 502 CAS .
Click here to see how this site uses Cookies. View our privacy policy here.