Methods for Improving the Sensitivity in Atom Trapping Flame Atomic Absorption Spectrometry: Analytical Scheme for the Direct Determination of Trace Elements in Beer

(Note: The full text of this document is currently only available in the PDF Version )

Henryk Matusiewicz and Mariusz Kopras


Abstract

A method is described for the atomic absorption (AA) determination of Ag, Cd, Cu, Fe, In, Mn, Pb, Tl and Zn in beer using an ‘integrated atom trap’ system mounted on a standard AA air–acetylene flame burner. A new design of atom trapping technique that would exceed the operational capabilities of existing arrangements (a water-cooled single or dual silica tube or a double-slotted quartz tube) and permit construction of an ‘integrated trap’ was investigated. A significant improvement in detection limit was achieved compared with that obtained using either of the above atom trapping techniques separately. Rapid, accurate analyses can be achieved using continuous aspiration. The concentration detection limits were 3.0, 5.0, 1.2, 4.0 and 0.1 ng ml–1 for Cu, Fe, Mn, Pb and Zn, respectively, using a 2 min in situ preconcentration time. The relative standard deviations are of the order of 3.0–6.0% for this technique. Basic analytical performance characteristics are also given for Ag, Cd, In and Tl using various designs of atom trap. The designs studied include both slotted tube and single silica tube water-cooled atom traps.


References

  1. R. J. Watling, Water SA, 1977, 3, 218 Search PubMed.
  2. C. Lau, A. Held and R. Stephens, Can. J. Spectrosc., 1976, 21, 100 Search PubMed.
  3. H. Matusiewicz, R. Sturgeon, V. Luong and K. Moffatt, Fresenius' J. Anal. Chem., 1991, 340, 35 CrossRef CAS and references cited therein.
  4. H. Matusiewicz, Spectrochim. Acta Rev., 1997, 52B Search PubMed in the press.
  5. A. D. Turner, D. J. Roberts and Y. Le Cor, J. Anal. At. Spectrom., 1995, 10, 721 RSC.
  6. L. A. Ellis and D. J. Roberts, J. Anal. At. Spectrom., 1996, 11, 259 RSC.
  7. L. A. Ellis and D. J. Roberts, J. Anal. At. Spectrom., 1996, 11, 1063 RSC.
  8. A. D. Turner and D. J. Roberts, J. Anal. At. Spectrom., 1996, 11, 231 RSC.
  9. H. Matusiewicz and M. Kopras, paper presented at XXIX Colloquium Spectroscopicum Internationale, Leipzig, Germany, 1995, p. 297(Tu-B 239) Search PubMed.
  10. R. Borriello and G. Sciaudone, At. Spectrosc., 1980, 1, 131 CAS.
  11. R. L. Hergenreder, At. Spectrosc., 1991, 12, 74 CAS.
  12. I. M. Skurikhin, J. Assoc. Off Anal. Chem. Int., 1993, 76, 257 Search PubMed.
  13. Y. Li, J. C. Van Loon and R. R. Barefoot, Fresenius' J. Anal. Chem., 1993, 345, 467 CrossRef CAS.
  14. H. P. Wagner, K. Dalglish and M. J. McGarrity, J. Am. Soc. Brew. Chem., 1991, 49, 28 Search PubMed.
  15. R. Srikanth, D. Ramana and V. Rao, Bull. Environ. Contam. Toxicol., 1995, 54, 783 CrossRef CAS.
  16. M. L. Cervera, A. Navarro, R. Montoro and R. Catala, J. Assoc. Off Anal. Chem., 1989, 72, 282 Search PubMed.
  17. M. L. Cervera, A. Navarro, R. Montoro, M. de la Guardia and A. Salvador, J. Anal. At. Spectrom., 1991, 6, 477 RSC.
  18. H. Wagner, J. Am. Soc. Brew. Chem., 1995, 53, 141 Search PubMed.
  19. I. Matsushige and E. de Oliveira, Food Chem., 1993, 47, 205 CrossRef CAS.
  20. H. Li, J. Lian and J. Du, Fenxi Ceshi Tongbao, 1991, 10, 51 Search PubMed.
  21. M. Lee and A. Brown, Brewers' Guardian, 1985, 13 Search PubMed.
  22. F. Wahdat and R. Neeb, Fresenius' Z. Anal. Chem., 1989, 335, 748 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.