Ablation Technique for Laser Ablation–Inductively Coupled Plasma Mass Spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Takafumi Hirata


Abstract

A laser ablation technique has been developed for elemental and isotopic ratio analyses of solid materials using inductively coupled plasma mass spectrometry. Using a soft ablation technique developed in this study, reproducibility of the signal intensity and precision of the elemental and isotopic ratio measurement were successfully improved. The technique involves beginning the ablation at low laser power (lower than 1 mJ) and gradually increasing power to achieve a constant and stable signal. Using this method minimises the release of large fragments and removes the spiky and high intensity signal which is characteristic of conventional ablation techniques. The method eliminates the requirement for a pre-ablation signal prior to data acquisition and consequently analysis time and sampling depth can be minimised. In order to evaluate the versatility of the soft ablation technique, Pb:U isotopic and elemental data for zircon samples have been determined. Conventional laser ablation techniques for Pb:U abundance ratios show a serious fractionation effect because of the greater volatility of Pb. Using the soft ablation technique developed here, this elemental fractionation can be effectively minimised and the resultant Pb:U age data for zircon samples show excellent agreement with the U–Pb data obtained by thermal ionisation mass spectrometry or secondary ion mass spectrometry. The data presented here demonstrate clearly that careful control of the ablation process can produce accurate and precise elemental and isotopic analysis from 10–12µm crater pits.


References

  1. A. L. Gray, Analyst (London), 1985, 110, 551 RSC.
  2. P. Arrowsmith, Anal. Chem., 1987, 59, 1437 CrossRef CAS.
  3. S. E. Jackson, H. P. Longerich, G. R. Dunning and B. J. Fryer, Canad. Mineral., 1992, 30, 1049 Search PubMed.
  4. H. P. Longerich, D. H. C. Wilton, B. J. Fryer and D. F. Strong, Geosci. Can., 1993, 20, 21 Search PubMed.
  5. B. J. Fryer, S. E. Jackson and P. Longerich, Chem. Geol., 1993, 109, 1 CrossRef CAS.
  6. Y. Huang, Y. Shibata and M. Morita, Anal. Chem., 1993, 65, 2999 CrossRef CAS.
  7. N. Machado and G. Gauthier, Geochim. Cosmochim. Acta, 1996, 60, 5063 CrossRef CAS.
  8. T. Hirata and R. W. Nesbitt, Geochim. Cosmochim. Acta, 1995, 59, 2491 CrossRef CAS.
  9. T. Hirata and R. W. Nesbitt, Earth Planet. Sci. Lett., 1997, 147, 11 CrossRef CAS.
  10. K. K. Falkner, G. P. Klinkhammer, C. A. Ungerer and D. M. Christie, Ann. Rev. Earth Planet. Sci., 1995, 23, 409 Search PubMed.
  11. T. E. Krogh, Geochim. Cosmochim. Acta, 1973, 37, 485 CrossRef CAS.
  12. T. E. Krogh, Geochim. Cosmochim. Acta, 1982, 46, 631 CrossRef CAS.
  13. B. Kober, Contrib. Mineral. Petrol., 1986, 96, 63 CrossRef.
  14. W. Compston and R. T. Pidgeon, Nature (London), 1986, 321, 766 CrossRef CAS.
  15. R. Feng, N. Machado and J. N. Ludden, Geochim. Cosmochim. Acta, 1993, 57, 3479 CrossRef CAS.
  16. D. J. Scott and G. Gauthier, Chem. Geol., 1996, 131, 127 CrossRef CAS.
  17. H. Cousin, A. Weber, B. Magyar, I. Abell and D. Gunther, Spectrochim. Acta, Part B, 1995, 50, 63 CrossRef.
  18. A. Moissette, T. J. Shepherd and S. R. Chenery, J. Anal. At. Spectrom., 1996, 11, 177 RSC.
  19. J. W. Hager, Anal. Chem., 1989, 61, 1243 CrossRef CAS.
  20. G. I. Ramendick, D. A. Tjurin and Y. I. Babikov, Anal. Chem., 1990, 62, 2501 CrossRef.
  21. M. Tatsumoto, R. J. Knight and C. J. Allegre, Science, 1973, 180, 1279 CAS.
  22. R. P. Menot, J. J. Peucat, O. Monnier and C. M. Fanning, in The Tectonics of East Antarctica; International Symp. Oct. 1993, pp. 13–14(abstr.) Search PubMed.
  23. J. J. Peucat, B. Mahabaleswar and M. Jayananda, J. Metamor. Geol., 1993, 11, 879 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.