Inductively Heated Vaporizer for Inductively Coupled Plasma Mass Spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

Douglas M. Goltz and Eric D. Salin


Abstract

An inductively heated vaporizer (IHV) was used to introduce analyte, as a dry aerosol, into an ICP-MS instrument. Sample volumes of 5–300 µl were pipetted into a graphite cup, which was then placed in the induction coil of the IHV to dry, pyrolyze and vaporize the analytes of interest. A small amount of N2, added to the Ar carrier flow, was used to prevent arcing between the graphite cup and the induction coil of the induction furnace. Experimental parameters such as Ar carrier flow, rf power and torch position were optimized by placing a small crystal of I2 in the graphite cup of the IHV and maximizing the127I+signal. Linearity of the calibration graphs improved and integrated signal intensity increased with increased mass of analyte deposited in the graphite cup. Limits of detection (LODs) in the range 3–100 pg ml–1were achieved for Ag, Pb, Cd, Tl and Zn. When compared with solution nebulization, these LODs represent an improvement of 3- to 30-fold depending on the element.


References

  1. G. E. M. Hall, J.-C. Pelchat, D. W. Boomer and M. Powell, J. Anal. At. Spectrom., 1988, 3, 791 RSC.
  2. M. M. Habib and E. D. Salin, Anal. Chem., 1984, 56, 1186 CrossRef.
  3. E. D. Salin and R. L. A. Sing, Anal. Chem., 1984, 56, 2596 CrossRef CAS.
  4. P. Moss and E. D. Salin, Appl. Spectrosc., 1991, 45, 1581 CAS.
  5. R. Rattray, J. Minoso and E. D. Salin, J. Anal. At. Spectrom., 1993, 8, 1033 RSC.
  6. R. Rattray and E. D. Salin, J. Anal. At. Spectrom., 1995, 10, 829 RSC.
  7. W. E. Petit and G. Horlick, Spectrochim. Acta, Part B, 1986, 41, 699 CrossRef.
  8. J. M. Ren and E. D. Salin, J. Anal. At. Spectrom., 1993, 8, 59 RSC.
  9. L. Blain and E. D. Salin, Spectrochim. Acta, Part B, 1992, 47, 1471 CrossRef.
  10. J. M. Ren and E. D. Salin, Spectrochim. Acta, Part B, 1994, 49, 555 CrossRef.
  11. J. M. Ren and E. D. Salin, Spectrochim. Acta, Part B, 1994, 49, 567 CrossRef.
  12. J. F. Alary and E. D. Salin, Spectrochim. Acta, Part B, 1995, 50, 405 CrossRef.
  13. H. B. Osborn, Jr., P. H. Brace, W. G. Johnson, J. W. Cable and T. E. Eagan, Induction Heating, American Society for Metals, Cleveland, OH, 1946 Search PubMed.
  14. S. Zinn and S. L. Semiatin, Elements of Induction Heating. Design, Control and Applications, Electric Power Research Institute, Palo Alto, CA, 1988 Search PubMed.
  15. C. F. Bauer and D. F. S. Natusch, Anal. Chem., 1981, 53, 2020 CrossRef CAS.
  16. C. D. Skinner and E. D. Salin, J. Anal. At. Spectrom., 1997, 12, 725 RSC.
  17. J. W. H. Lam and G. Horlick, Spectrochim. Acta, Part B, 1990, 45, 1313 CrossRef.
  18. J. W. H. Lam and G. Horlick, Spectrochim. Acta, Part B, 1990, 45, 1327 CrossRef.
  19. J. M. Craig and D. Beauchemin, Spectrochim. Acta, Part B, 1991, 46, 603 CrossRef.
  20. J. Wang, E. H. Evans and J. A. Caruso, J. Anal. At. Spectrom., 1992, 7, 929 RSC.
  21. S. F. Durrant, Fresenius' J. Anal. Chem., 1993, 347, 389 CrossRef CAS.
  22. G. Horlick and S. H. Tan, Spectrochim. Acta, Part B, 1985, 40, 1555 CrossRef.
  23. D. Beauchemin, J. W. McLaren and S. S. Berman, Spectrochim. Acta, Part B, 1987, 42, 467 CrossRef.
  24. D. C. Gregoire, N. J. Miller-Ihli and R. E. Sturgeon, J. Anal. At. Spectrom., 1994, 9, 605 RSC.
  25. F. Vanhaecke, G. Galbacs, S. Boonen, L. Moens and R. Dams, J. Anal. At. Spectrom., 1995, 10, 1047 RSC.
  26. D. C. Gregoire, S. Al-Maawali and C. L. Chakrabarti, Spectrochim. Acta, Part B, 1992, 47, 1123 CrossRef.
  27. B. L'vov, Spectrochim. Acta, Part B, 1997, 52, 1 CrossRef.