Microwave-assisted Acid Dissolution of Sintered Advanced Ceramics for Inductively Coupled Plasma Atomic Emission Spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

María T. Larrea, Isabel Gómez-pinilla and Juan C. Fariñas


Abstract

The microwave-assisted acid dissolution of sintered bodies of 28 structural and electronic advanced ceramic materials was systematically evaluated. These materials included zirconia-based ceramics, such as m-ZrO2 (a non-stabilized monoclinic zirconia), Ca-PSZ and Mg-PSZ (two partially stabilized zirconias), Y-FSZ (a fully stabilized zirconia) and Ce-TZP, Yb-TZP and Y-TZP/Ce (three tetragonal polycrystalline zirconias); alumina-based ceramics, such as Al2O3, mullite and spinel; ceria-based ceramics, such as CeO2–Gd2O3 (cubic ceria gadolinia); titania-based ceramics, such as TiO2; titanate-based ceramics, such as Al2TiO5, BaTiO3 and BIT (bismuth titanate); lead titanate-based ceramics, such as Ca-PT, La-PT, Nd-PT, Sm-PT and Gd-PT; lead zirconate titanate-based ceramics, such as PZT and PLZT; niobate-based ceramics, such as PMN (lead magnesium niobate); non-oxide-based ceramics, such as AlN, BN, Si3N4 and SiC; and oxide and non-oxide-based ceramics, such as β′-sialon (silicon aluminium oxynitride). Fifteen acids or mixtures of acids were tried, including HCl, HNO3, H2SO4, aqua regia, H2SO4–(NH4)2SO4 and mixtures of these acids with HF and with H2O2. A commercially available laboratory medium pressure microwave oven was used. Eleven optimized microwave methods were developed. These methods are simple (three stages maximum), fast (15–35 min digestion time) and mild (20–60% of the microwave oven power). By applying these microwave methods, it was possible to dissolve completely all the sintered advanced ceramics, except SiC and β′-sialon. These two non-oxide ceramics were the only samples that could not be dissolved by any of the acids or mixtures of acids tested. The microwave-assisted acid dissolution was compared for ICP-AES with conventional dissolution procedures, i.e., alkali fusion in a platinum crucible and in a graphite crucible and acid decomposition by conductive heating at elevated pressure (in a PTFE bomb). It was demonstrated that microwave-assisted dissolution presents many advantages over the other procedures. When compared with acid decomposition by conductive heating in a PTFE bomb, one of the most important advantages is the drastic shortening of the digestion time from hours to minutes. When compared with alkali fusions, one of the most important advantages is the use of smaller amounts of high-purity acids, which contain less impurities than the fluxes; because of this, matrix effects and contamination from the attack reagents are lower, and consequently there is an improvement in the analytical figures of merit of ICP-AES.


References

  1. Advanced Technical Ceramics, ed. Somiya, S., Academic Press, San Diego, 1989 Search PubMed.
  2. G. A. Hutchins, G. H. Maher and S. D. Ross, Am. Ceram. Soc. Bull., 1987, 66, 681 Search PubMed.
  3. M. Jayaratna, M. Yoshimura and S. Somiya, J. Mater. Sci., 1987, 22, 2011 CAS.
  4. P. Roy-Chowdhury and S. B. Deshpande, J. Mater. Sci., 1987, 22, 2209 CAS.
  5. S. Wu and R. J. Brook, Trans. J. Br. Ceram. Soc., 1983, 82, 200 Search PubMed.
  6. P. Miranzo and J. S. Moya, in Science of Ceramics, ed. Taylor, D., Institute of Ceramics, Stoke-on-Trent, 1988, vol. 14, pp. 243–248 Search PubMed.
  7. T. Ishizuka, Y. Uwamino, A. Tsuge and T. Kamiyanagi, Anal. Chim. Acta, 1984, 161, 285 CrossRef CAS.
  8. E. H. Homeier, R. J. Kot, L. J. Bauer and J. T. Genualdi, J. Anal. At. Spectrom., 1988, 3, 829 RSC.
  9. T. Graule, A. Van Bohlen, J. A. C. Broekaert, E. Grallath, R. Klockenkämper, P. Tschöpel and G. Tölg, Fresenius' Z. Anal. Chem., 1989, 335, 637 CrossRef CAS.
  10. T. Graule, P. Tschöpel, E. Grallath, J. A. C. Broekaert and G. Tölg, Ceram. Forum Int./Ber., 1991, 68, 5 Search PubMed.
  11. H. Ishii and K. Satoh, Talanta, 1982, 29, 243 CrossRef CAS.
  12. C. Martínez-Lebrusant and F. Barba, Analyst, 1990, 115, 1335 RSC.
  13. J. C. Fariñas and M. F. Barba, J. Anal. At. Spectrom., 1992, 7, 869 RSC.
  14. S. R. Marín, S. G. Cornejo and L. Arriagada, J. Anal. At. Spectrom., 1994, 9, 93 RSC.
  15. S. Nathansohn and G. Czupryna, Spectrochim. Acta, Part B, 1983, 38, 317 CrossRef.
  16. M. Fravek, V. Krivan, B. Gercken and J. Pavel, Mikrochim. Acta, 1994, 113, 251.
  17. C. Adelhelm and D. Hirschfeld, Fresenius' J. Anal. Chem., 1992, 342, 125 CrossRef CAS.
  18. A. Dornemann, K. H. Kolten and D. Rudan, Fresenius' Z. Anal. Chem., 1987, 326, 232 CrossRef CAS.
  19. B. Docekal, J. A. C. Broekaert, T. Graule, P. Tschöpel and G. Tölg, Fresenius' J. Anal. Chem., 1992, 342, 113 CrossRef CAS.
  20. M. Franek and V. Krivan, Fresenius' J. Anal. Chem., 1992, 342, 118 CrossRef CAS.
  21. J. C. Fariñas and M. F. Barba, Appl. Surf. Sci., 1991, 50, 202 CrossRef CAS.
  22. H. Morikawa and T. Ishizuka, Analyst, 1987, 112, 999 RSC.
  23. J. C. Fariñas and M. F. Barba, Mikrochim. Acta, 1989, III, 299.
  24. J. C. Fariñas and M. F. Barba, J. Anal. At. Spectrom., 1992, 7, 877 RSC.
  25. H. A. Foner, Analyst, 1984, 109, 1469 RSC.
  26. R. Carleer, L. C. Van Poucke and J. P. François, Bull. Soc. Chim. Belg., 1986, 95, 385 CAS.
  27. T. N. Van der Walt and F. W. E. Strelow, Anal. Chem., 1985, 57, 2889 CrossRef CAS.
  28. J. Dolezal, J. Lenz and Z. Sulcek, Anal. Chim. Acta, 1969, 47, 517 CrossRef CAS.
  29. H. A. Foner, Anal. Chem., 1984, 56, 856 CAS.
  30. J. Hejduk and J. Novak, Fresenius' Z. Anal. Chem., 1968, 234, 327 CrossRef CAS.
  31. D. Pollmann, F. Leis, G. Tölg, P. Tschöpel and J. A. C. Broekaert, Spectrochim. Acta, Part B, 1994, 49, 1251 CrossRef.
  32. H. Matusiewicz, Mikrochim. Acta, 1993, 111, 71 CAS.
  33. J. A. C. Broekaert, R. Brandt, F. Leis, C. Pilger, D. Pollmann, P. Tschöpel and G. Tölg, J. Anal. At. Spectrom., 1994, 9, 1063 RSC.
  34. K. Stulik, P. Beran, J. Dolezal and F. Opekar, Talanta, 1978, 25, 363 CrossRef CAS.
  35. A. Parker and C. Healy, Analyst, 1970, 95, 204 RSC.
  36. S. Kozuka, Y. Yokote, K. Abe, M. Hayashi and H. Matsunaga, Fresenius' J. Anal. Chem., 1995, 351, 801 CrossRef CAS.
  37. K. C. Friese and V. Krivan, Anal. Chem., 1995, 67, 354 CrossRef CAS.
  38. W. F. Davis and E. J. Merkle, Anal. Chem., 1981, 53, 1139 CAS.
  39. B. Docekal and V. Krivan, J. Anal. At. Spectrom., 1992, 7, 521 RSC.
  40. C. Pilger, F. Leis, P. Tschöpel, J. A. C. Broekaert and G. Tölg, Fresenius' J. Anal. Chem., 1995, 351, 110 CrossRef.
  41. K. Goto, M. Furukawa and S. Shibata, Fresenius' Z. Anal. Chem., 1987, 327, 730 CrossRef CAS.
  42. R. P. Chigina and V. P. Rudenko, Glass Ceram., 1977, 34, 334 CrossRef.
  43. H. Kruidhof, Anal. Chim. Acta, 1978, 99, 193 CrossRef CAS.
  44. Introduction to Microwave Sample Preparation: Theory and Practice, ed. Kingston, H. M., and Jassie, L. B., American Chemical Society, Washington, DC, 1988 Search PubMed.
  45. H. Matusiewicz and R. E. Sturgeon, Prog. Anal. Spectrosc., 1989, 12, 21 Search PubMed.
  46. E. Tatár, I. Varga and G. Záray, Mikrochim. Acta, 1993, 111, 45 CAS.
  47. J. C. Fariñas, H. P. Cabrera and M. T. Larrea, J. Anal. At. Spectrom., 1995, 10, 511 RSC.
  48. P. W. J. M. Boumans, Line Coincidence Tables for Inductively Coupled Plasma Atomic Emission Spectrometry, Pergamon Press, Oxford, 2nd edn., 1984 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.