Direct Determination of Trace Noble Metals (Palladium, Platinum and Rhodium) in Automobile Catalysts by Glow Discharge Mass Spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

David M. Wayne


Abstract

Most automobile catalysts consist of a CeO2- and Al2O3-rich washcoat deposited on a porous, honeycombed cordierite support block. The active ingredients in the automobile catalyst are several noble metals (usually Pd, Rh and Pt) contained in the washcoat. Rapid, precise and accurate quantification of noble metals in automobile catalysts is desirable for noble metal tracking and accountability. Determination of Pd, Rh and Pt in the catalysts by ID–ICP-MS is possible only after extensive treatment with highly corrosive acids in sealed quartz tubes at high temperatures. By contrast, GDMS permits the direct determination of noble metals in the catalysts without prior dissolution. Although the auto catalyst powders are non-conducting, they may be combined with a metallic binder and analysed. Aluminium powder was chosen as the binder material for its superior gettering abilities, and because the Al mass spectrum in the vicinity of the Pd, Rh and Pt peaks was clear of interferences. Results from the GDMS analysis of noble metals in NIST Standard Reference Material 2557 Used Auto Catalyst (monolith) are precise and accurate to <10% RSD for Pd, Rh and Pt. The current generation of auto catalyst materials also contain significant amounts (≈0.3% by mass) of ZrO2, which causes isobaric (ZrO)+ interference on m/z 106, 107, 108, 110 and 112. A simple mathematical peak-stripping routine was devised to eliminate the (ZrO)+ interference.


References

  1. E. S. Beary and P. J. Paulsen, Anal. Chem., 1995, 67, 3193 CrossRef CAS.
  2. M. R. Winchester, S. M. Hayes and R. K. Marcus, Spectrochim. Acta, Part B, 1991, 46, 615 CrossRef.
  3. R. K. Marcus, T. R. Harville, Y. Mei and C. S. Shick, Anal. Chem., 1994, 66, 902A CAS.
  4. T. R. Harville and R. K. Marcus, Anal. Chem., 1995, 67, 1271 CrossRef CAS.
  5. F. L. King and W. W. Harrison, Mass Spectrom. Rev., 1990, 9, 285 CAS.
  6. W. W. Harrison, K. R. Hess, R. K. Marcus and F. L. King, Anal. Chem., 1986, 58, 341A CAS.
  7. A. A. van Heuzen, Spectrochim. Acta, Part B, 1991, 46, 1803 CrossRef.
  8. A. A. van Heuzen and J. B. W. Morsink, Spectrochim. Acta, Part B, 1991, 46, 1819 CrossRef.
  9. S. L. Tong and W. W. Harrison, Spectrochim. Acta, Part B, 1993, 48, 1237 CrossRef.
  10. J. Teng, C. M. Barshick, D. C. Duckworth, S. J. Morton, D. H. Smith and F. L. King, Appl. Spectrosc., 1995, 49, 1361 CAS.
  11. D. M. P. Milton and J. C. Hutton, Spectrochim. Acta, Part B, 1993, 48, 39 CrossRef.
  12. W. Schelles, S. DeGendt, V. Muller and R. Van Grieken, Appl. Spectrosc., 1995, 49, 939 CAS.
  13. M. Betti, J. Anal. At. Spectrom., 1996, 11, 855 RSC.
  14. S. K. Ohorodnik, S. DeGendt, S. L. Tong and W. W. Harrison, J. Anal. At. Spectrom., 1993, 8, 859 RSC.
  15. VG Instruments Group, D. J. Hall, N. E. Sanderson and E. F. H. Hall, US Pat 4 853 539, Aug. 1, 1989.
  16. D. M. Wayne, T. M. Yoshida and D. E. Vance, J. Anal. At. Spectrom., 1996, 11, 861 RSC.
  17. Y. Mei and W. W. Harrison, Spectrochim. Acta, Part B, 1991, 46, 175 CrossRef.
  18. T. Takahashi and T. Shimamura, Anal. Chem., 1994, 66, 3274 CrossRef CAS.
  19. E. S. Beary, personal communication, October 1996.
  20. O. V. Borisov, D. M. Coleman, K. A. Oudsema and R. O. Carter, III, J. Anal. At. Spectrom., 1997, 12, 239 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.