Charge Transfer Excitation in Glow Discharge Sources: the Spectra of Titanium and Copper with Neon, Argon and Krypton as the Plasma Gas

(Note: The full text of this document is currently only available in the PDF Version )

EDWARD B. M. STEERS


Abstract

There is increasing awareness of the importance of asymmetric charge transfer as a mechanism for the selective excitation of ionic energy levels in low pressure gas discharges. A Fourier transform spectrometer has been used to record the titanium spectrum from a microwave boosted glow discharge source (in dc and boosted modes) using neon, argon and krypton as the plasma gas. Analysis of the data produced shows clear evidence of charge transfer excitation by argon and krypton ions. The wider energy separation between the ground state2P3/2 ion and the metastable 2P1/2 ionic state (0.75 eV) of krypton makes it clear that the metastable state is also responsible for charge transfer reactions. This observation, together with results obtained using krypton with a copper cathode, supports the earlier suggestion that the metastable argon ion is responsible for the selective excitation of the Cu II 224.70 nm line when a discharge with a copper cathode is operated in argon.


References

  1. W. Grimm, Naturwissenschaften., 1967, 54, 586 CrossRef CAS.
  2. W. Grimm, Spectrochim. Acta, Part B, 1968, 23, 413 CrossRef.
  3. O. S. Duffendach and J. G. Black, Phys. Rev., 1929, 34, 35 CrossRef.
  4. O. S. Duffendach and W. H. Gran, Phys. Rev., 1937, 51, 804 CrossRef.
  5. E. M. van Veldhuizen and F. J. de Hoog, J. Phys. D, 1984, 17, 953 Search PubMed.
  6. E. B. M. Steers and R. J. Fielding, J. Anal. At. Spectrom., 1987, 2, 239 RSC.
  7. E. B. M. Steers and F. Leis, J. Anal. At. Spectrom., 1989, 4, 199 RSC.
  8. E. B. M. Steers and F. Leis, Spectrochim. Acta, Part B, 1991, 46, 527 CrossRef.
  9. E. B. M. Steers and A. P. Thorne, J. Anal. At. Spectrom., 1993, 8, 309 RSC.
  10. K. Wagatsuma and K. Hirokawa, J. Anal. At. Spectrom., 1989, 4, 525 RSC.
  11. K. Wagatsuma and K. Hirokawa, Spectrochim. Acta, Part B, 1991, 46, 269 CrossRef.
  12. K. Wagatsuma and K. Hirokawa, Spectrochim. Acta, Part B, 1993, 48, 1039.
  13. K. Wagatsuma and K. Hirokawa, Spectrochim. Acta, Part B, 1996, 51, 349 CrossRef.
  14. K. Wagatsuma, Z. Phys. D, 1996, 37, 231 CrossRef CAS.
  15. Se. Johansson and U. Litzén, J. Phys. B, 1980, 13, L253 Search PubMed.
  16. Se. Johansson and U. Litzén, J. Phys. B, 1978, 11, L703 Search PubMed.
  17. K. Danzmann and M. Kock, J. Phys. B, 1981, 14, 2989 Search PubMed.
  18. A. P. Thorne, C. J. Harris, I. Wynne-Jones, R. C. M. Learner and G. Cox, J. Phys. E, 1987, 20, 54 Search PubMed.
  19. R. C. M. Learner, A. P. Thorne, I. Wynne-Jones, J. W. Brault and M. C. Abrams, J. Opt. Soc. Am., 1995, A12, 2165 Search PubMed (and references cited therein).
  20. F. Leis, J. A. C. Broekaert and K. Laqua, Spectrochim. Acta, Part B, 1987, 42, 1169 CrossRef.
  21. E. B. M. Steers and A. P. Thorne, Fresenius' J. Anal. Chem., 1996, 355, 868 CAS.
  22. A. R. Striganov and N. S. Sventitskii, Tables of Spectral Lines of Neutral and Ionized Atoms, IFI/Plenum, New York, 1968 Search PubMed.
  23. I. Zapadlik, Se. Johansson and U. Litzén, unpublished work.
  24. Y. Duan, Y. Li, Z. Du, Q. Jin and J. A. Olivares, Appl. Spectrosc., 1996, 50, 977 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.