Inductively Coupled Plasma Mass Spectrometry for Direct Multi-element Analysis of Diluted Human Blood and Serum

(Note: The full text of this document is currently only available in the PDF Version )

EBBA BARANY, INGVAR A. BERGDAHL, ANDREJS SCHÜTZ, STAFFAN SKERFVING and AGNETA OSKARSSON


Abstract

A method for the inductively coupled plasma mass spectrometry (ICP-MS) multi-element analysis of diluted human blood and serum was used for the following elements: Co, Ni, Cu, Zn, Ga, Se, Rb, Mo, Rh, Pd, Cd, Sn, Sb, W, Pt, Hg, Tl and Pb. Sample pretreatment was a simple dilution (ten times for blood and five times for serum) with a solution containing 5 g l-1 of 25% ammonia, 0.5 g l-1 Triton X-100, and 0.5 g l-1 EDTA in Millipore water. In and Sc were used as internal standards. For sample introduction a flow-injection-type technique (based on time instead of volume) was used. The determinations were carried out first in a peak-jumping mode for selected masses, and then in a scanning mode. Each determination of a preparation took 75 s. The results for reference samples agreed with recommended or certified values for Co, Cu, Zn, Rb, Cd, Tl and Pb in blood, and for Rb, Mo and Cd in serum. For Ni and Hg in blood, and Cu and Zn in serum, the results agreed with one of two reference samples. The detection limits for all these elements (except for Tl) were sufficient for analysis of samples from the general population. On the other hand, the results for Se in blood, and for Co, Ni, Se, Sn and Hg in serum did not agree with recommended or certified values. No reference samples are available for Ga, Mo, Rh, Pd, Sn, Sb, W, or Pt in blood, or for Ga, Rh, Pd, W, Pt, or Pb in serum. Generally, the limits of detection for the elements in the latter group (below 0.15 µg l-1) are close to or above the levels present in the general population.


References

  1. T. W. Clarkson, L. Friberg, G. F. Nordberg and P. R. Sager, Biological Monitoring of Toxic Metals.Plenum Press, New York, 1988, 686 pp Search PubMed.
  2. T. M. Lutz, P. M. V. Nirel and B. Schmidt, in Applications of Plasma Source Mass Spectrometry, ed. Holland, G., and Eaton, A. N., The Royal Society of Chemistry, Cambridge, UK, 1991, pp. 96–100 Search PubMed.
  3. H. Morita, T. Kita, M. Umeno, M. Morita, J. Yoshinaga and K. Okamoto, Sci. Total Environ., 1994, 151, 9 CrossRef CAS.
  4. H. Vanhoe, R. Dams and J. Versieck, J. Anal. At. Spectrom., 1994, 9, 23 RSC.
  5. A. Alimonti, F. Petrucci, B. Santucci, A. Cristaudo and S. Caroli, Anal. Chim. Acta, 1995, 306, 35 CrossRef CAS.
  6. K. L. Nuttall, W. H. Gordon and K. Owen, Ann. Clin. Lab. Sci., 1995, 25, 264 Search PubMed.
  7. J. Begerow and L. Dunemann, J. Anal. At. Spectrom., 1996, 11, 303 RSC.
  8. D. E. Nixon and T. P. Moyer, Spectrochim. Acta, Part B, 1996, 51, 13 CrossRef.
  9. C. Vandecasteele, H. Vanhoe and R. Dams, J. Anal. At. Spectrom., 1993, 8, 781 RSC.
  10. I. L. Shuttler and H. T. Delves, Analyst, 1986, 111, 651 RSC.
  11. H. T. Delves and M. J. Campbell, J. Anal. Atom. Spectrom., 1988, 3, 343 RSC.
  12. A. Schütz, I. A. Bergdahl, A. Ekholm and S. Skerfving, Occup. Environ. Med., 1996, 53, 736 CrossRef CAS.
  13. I. A. Bergdahl, A. Schütz, L. Gerhardsson, A. Jensen and S. Skerfving, Scand. J. Work Environ. Health, in the press Search PubMed.
  14. J. Versieck, L. Vanballenberghe, A. De Kesel, J. Hoste, B. Wallaeys, J. Vandenhaute, N. Baeck and F. W. Sunderman, Anal. Chim. Acta, 1988, 204, 63 CrossRef CAS.
  15. H. Vanhoe, J. Versieck, L. Moens and R. Dams, Trace Elem. Electrolytes., 1995, 12, 81 Search PubMed.
  16. D. Beauchemin, Analyst, 1993, 118, 815 RSC.
  17. S. H. Tan and G. Horlick, Appl. Spectrosc., 1986, 40, 445 CAS.
  18. J. Goossens, F. Vanhaecke, L. Moens and R. Dams, Anal. Chim. Acta, 1993, 280, 137 CrossRef.
  19. S. J. Hill, M. J. Ford and L. Ebdon, J. Anal. At. Spectrom., 1992, 7, 1157 RSC.
  20. H.-S. Niu and R. S. Houk, Spectrochim. Acta, Part B, 1996, 51, 779 CrossRef.
Click here to see how this site uses Cookies. View our privacy policy here.