Effects of Bias Voltage and Easily-ionized Elements on the Spatial Distribution of Analytes in Furnace Atomization Plasma Emission Spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

VICTOR PAVSKI, RALPH E. STURGEON and CHUNI L. CHAKRABARTI


Abstract

The effect of bias voltage and the presence of easily-ionized elements (EIEs) on the spatial distribution of excited-state atoms and ions of Cu, Ag, Cs and Ca in furnace atomization plasma emission spectrometry is presented. The dc bias of the centre electrode significantly affects the spatial distribution of He I, Cu I, Ag I, Cs I, and Ca II emission in the absence of EIEs. A reasonably uniform distribution of excited-state analyte atoms over the central cross-section of the tube occurs when the centre electrode is self-biased during the course of an atomization transient. A depleted area of Cs I emission around the centre electrode coupled with enhanced Ca II emission in the same region reveals that ionization of analytes is most pronounced in this region. With positive dc bias, concentric rings of enhanced emission occur between the centre electrode and the tube wall for analyte atoms and the He I plasma gas, although the overall breadth of analyte emission distribution is decreased. With NaCl, NaNO3 and CsCl serving as EIEs, analyte emission from Ag I, Cu I and Ca II in the region between the centre electrode and the tube wall is strongly suppressed with self-bias. The degree of the suppression depends on the extent of vapour cloud overlap between analyte and EIE. In general, equimolar amounts of NaNO3 and CsCl suppress analyte emission similarly and both produce a greater suppression than NaCl. Equal amounts of Fe, added as an interfering matrix, produces a suppression of analyte emission similar to that of EIEs, suggesting that the primary cause of suppression is the loss of energy from the plasma (as photons) due to excitation and ionization of matrix vapour. Control of the dc bias enhances the radial distribution of excited analyte atoms in the presence of EIEs and Fe, but only at low (≤2 µg) interferent loadings.


References

  1. D. C. Liang and M. W. Blades, Spectrochim. Acta, Part B, 1989, 45, 1059 CrossRef.
  2. R. E. Sturgeon, S. N. Willie, V. T. Luong, S. S. Berman and J. G. Dunn, J. Anal. At. Spectrom., 1989, 4, 669 RSC.
  3. D. L. Smith, D. C. Liang and M. W. Blades, Spectrochim. Acta, Part B, 1990, 45, 493 CrossRef.
  4. T. D. Hettipathirana and M. W. Blades, Spectrochim. Acta, Part B, 1992, 47, 493 CrossRef.
  5. T. D. Hettipathirana and M. W. Blades, J. Anal. At. Spectrom., 1992, 7, 1039 RSC.
  6. P. R. Banks, D. C. Liang and M. W. Blades, Spectroscopy, 1992, 7, 36 Search PubMed.
  7. T. D. Hettipathirana and M. W. Blades, J. Anal. At. Spectrom., 1993, 8, 955 RSC.
  8. C. W. LeBlanc and M. W. Blades, Spectrochim. Acta, Part B, 1995, 50, 1395 CrossRef.
  9. G. F. R. Gilchrist, P. M. Celliers, H. Yang, C. Yu and D. C. Liang, J. Anal. At. Spectrom., 1993, 8, 809 RSC.
  10. G. F. R. Gilchrist and D. C. Liang, Am. Lab., 1993, 25, 34U Search PubMed.
  11. R. E. Sturgeon, S. N. Willie, V. T. Luong and S. S. Berman, Anal. Chem., 1990, 62, 2370 CrossRef CAS.
  12. R. E. Sturgeon, S. N. Willie, V. T. Luong and S. S. Berman, J. Anal. At. Spectrom., 1990, 5, 635 RSC.
  13. R. E. Sturgeon, S. N. Willie, V. T. Luong and S. S. Berman, J. Anal. At. Spectrom., 1991, 6, 19 RSC.
  14. R. E. Sturgeon, S. N. Willie, V. T. Luong and J. G. Dunn, Appl. Spectrosc., 1991, 45, 1413 CAS.
  15. R. E. Sturgeon and S. N. Willie, J. Anal. At. Spectrom., 1992, 7, 339 RSC.
  16. R. E. Sturgeon, V. T. Luong, S. N. Willie and R. K. Marcus, Spectrochim. Acta, Part B, 1993, 48, 893 CrossRef.
  17. S. Imai and R. E. Sturgeon, J. Anal. At. Spectrom., 1994, 9, 493 RSC.
  18. S. Imai and R. E. Sturgeon, J. Anal. At. Spectrom., 1994, 9, 765 RSC.
  19. S. Imai, R. E. Sturgeon and S. N. Willie, J. Anal. At. Spectrom., 1994, 9, 759 RSC.
  20. V. Pavski, C. L. Chakrabarti and R. E. Sturgeon, J. Anal. At. Spectrom., 1994, 9, 1399 RSC.
  21. H. Falk, E. Hoffmann and Ch. Ludke, Prog. Anal. Spectrosc., 1988, 11, 417 Search PubMed.
  22. N. E. Ballou, D. L. Styris and J. M. Harnly, J. Anal. At. Spectrom., 1988, 3, 1141 RSC.
  23. J. M. Harnly, D. L. Styris and N. E. Ballou, J. Anal. At. Spectrom., 1990, 5, 139 RSC.
  24. H. Falk, J. Anal. At. Spectrom., 1991, 6, 631 RSC.
  25. P. G. Riby and J. M. Harnly, J. Anal. At. Spectrom., 1993, 8, 945 RSC.
  26. M. R. Tripcovic and I. D. Holclajtner-Antunovic, J. Anal. At. Spectrom., 1993, 8, 349 RSC.
  27. P. J. Galley, M. Glick and G. M. Hieftje, Spectrochim. Acta, Part B, 1993, 48, 769 CrossRef.
  28. K. Kitagawa and G. Horlick, J. Anal. At. Spectrom., 1992, 7, 1207 RSC.
  29. P. L. Larkins, Spectrochim. Acta, Part B, 1991, 46, 291 CrossRef.
  30. P. H. Ratliff and W. W. Harrison, Spectrochim. Acta, Part B, 1994, 49, 1747 CrossRef.
  31. G. M. Hieftje, Spectrochim. Acta, Part B, 1992, 47, 3 CrossRef.
  32. A. Von Engel, Ionized Gases, Oxford University Press, London, 2nd edn., 1965 Search PubMed.
  33. J. D. Cobine, Gaseous Conductors: Theory and Engineering Applications, Dover Publications, Inc., New York, 1958 Search PubMed.
  34. A. S. Gilmour, Jr., Microwave Tubes, Artech House, Inc., Dedham, MA, 1986 Search PubMed.
  35. R. E. Sturgeon, unpublished data.
  36. J. McNally and J. A. Holcombe, Anal. Chem., 1987, 59, 1105 CrossRef CAS.
  37. W. C. Campbell and J. M. Ottaway, Talanta, 1974, 21, 837 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.