Establishing an SI-traceable Copper Concentration in the Candidate Reference Material MURST ISS A1 Antarctic Sediment Using Isotope Dilution Applied as a Primary Method of Measurement

(Note: The full text of this document is currently only available in the PDF Version )

I. PAPADAKIS, P. D. P. TAYLOR and P. DE BIÈVRE


Abstract

Traceability is a term that is heavily debated world-wide in the analytical chemistry community. This paper describes an attempt to obtain an SI-traceable value for the Cu concentration in the Candidate Reference Material MURST-ISS A1 Antarctic Sediment. This material was collected by the Instituto Superiore di Sanita (ISS, Rome, Italy) and was processed at the Institute for Reference Materials and Measurements (IRMM, Geel, Belgium) into a homogeneous and dried powder. The analytical method used was isotope dilution (ID) combined with inductively coupled plasma mass spectrometry (ICP-MS). Microwave pressurised digestion and separation of Cu by ion-exchange chromatography were used. The International Vocabulary of Basic and General Terms in Metrology (VIM) definition of traceability requires ‘stated uncertainties’. Because a primary method of measurement (ID) is used, an attempt was made to make these ‘stated uncertainties’ as detailed as possible, thereby using the International Organisation for Standardization (ISO)/Bureau International des Poids et Measures (BIPM) guide and taking into account all possible sources of uncertainty (Type A and Type B). The established value for the Cu concentration is 86.7 nmol g-1 with an expanded uncertainty of 4.9 nmol g-1 (coverage factor k=2).


References

  1. P. De Bièvre, R. Kaarls, H. S. Peiser, S. D. Rasberry and W. P. Reed, Accred. Qual. Assur., 1996, 1, 3 CrossRef CAS.
  2. International Vocabulary of Basic and General Terms in Metrology, International Organisation for Standardisation, Genève, 1993 Search PubMed.
  3. Comité Consultatif pour la Quantite de Matière, Rapport de la 1re session, 1995, Édité par le BIPM, Pavillon de Breteuil, F-92312 Sèvres Cedex, France.
  4. J. D. Fassett and P. J. Paulsen, Anal. Chem., 1989, 61, 643A CrossRef CAS.
  5. J. R. Moody and M. S. Epstein, Spectrochim. Acta, Part B, 1991, 46, 1571 CrossRef.
  6. T. D. B. Lyon and G. S. Fell, J. Anal. At. Spectrom., 1990, 5, 135 RSC.
  7. G. Kramer, personal communication.
  8. K. H. Grobecker, personal communication.
  9. U. Kurfürst, K. H. Grobecker and M. Stoeppler, In: Trace Elements—Analytical Chemistry in Medicine and Biology, ed. Bräter, P., and Schramel, P., Walter de Gruyter, Berlin, 1984, Vol. 3, pp. 591–601 Search PubMed.
  10. P. De Bièvre, Fresenius' J. Anal. Chem., 1990, 337, 766 CrossRef CAS.
  11. P. De Bièvre, Fresenius' J. Anal. Chem., 1994, 350, 277 CrossRef CAS.
  12. Certificate for IRMM-632 spike isotopic reference material, in preparation.
  13. F. Vanhaecke, H. Vanhoe, L. Moens and R. Dams, Bull. Soc. Chim. Belg., 1995, 104, 653 CAS.
  14. International Union of Pure and Applied Chemistry, Commission on Atomic Weights and Isotope Abundances, Isotopic Composition of Elements, Pure Appl. Chem., 1991, 63, 991 Search PubMed.
  15. F. Vanhaecke, L. Moens, R. Dams, I. Papadakis and P. Taylor, Anal. Chem., 1997, 69, 268 CrossRef CAS.
  16. Guide to the Expression of Uncertainty in Measurement, International Organisation for Standardisation, Genève, 1993 Search PubMed.
  17. Quantifying Uncertainty in Analytical Measurement, EURACHEM, London, 1995 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.