Comparison of Chemical Modifiers for the Determination of Lead in Water Samples With Electrothermal Atomic Absorption Spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

YANZHONG LIANG and YUPING XU


Abstract

A comprehensive comparison is made of the analytical characteristics of the most frequently used modifiers for lead determination in water samples by ETAAS. These modifiers include NH4H2PO4, Pd, Pd–Mg, Pd–NH4H2PO4, Mg–NH4H2PO4, Ni–NH4H2PO4 and Ni–Sr–NH4H2PO4. The comparison of analytical characteristics is based mainly on the common requirements for the direct analysis of water samples, which include maximum allowable pyrolysis temperature, tolerable interference, characteristic mass (sensitivity) and sample recovery. Overall, Ni–Sr–NH4H2PO4 performs better than the others in all aspects cited above. Pd-based modifiers behave very similarly except that the sensitivity using Pd–NH4H2PO4 is slightly lower. The use of Ni–Sr–NH4H2PO4 raises the maximum tolerable pyrolysis temperature to 1300 °C, which is significantly higher than that of the other modifiers. Similarly, the permissible amounts of chloride and sulfate interference are higher with the Ni–Sr–NH4H2PO4 modifier. The characteristic masses (mo) for the modifiers NH4H2PO4, Pd, Pd–Mg, Pd–NH4H2PO4, Mg–NH4H2PO4, Ni–NH4H2PO4 and Ni–Sr–NH4H2PO4 are 6.1, 8.8, 7.9, 11.6, 10.5, 7.0 and 4.5 pg, respectively, whereas mo is 12.1 without modifiers. The lead recoveries in samples of natural and tap waters are 72–94% with the Ni–Sr–NH4H2PO4 modifier. By contrast, the lead recoveries with other modifiers are 53–90%.


References

  1. M. W. Hinds, M. Katyal and K. W. Jackson, J. Anal. At. Spectrom., 1988, 3, 83 RSC.
  2. W. Slavin, D. C. Manning and G. R. Carnick, At. Spectrosc., 1981, 2, 137 CAS.
  3. R. D. Ediger, At. Absorpt. Newsl., 1975, 14, 127 Search PubMed.
  4. X. Q. Shan and Z. M. Ni, Can. J. Spectrosc., 1981, 26, 219 Search PubMed.
  5. N. S. Thomaidis, E. A. Piperaki and C. E. Efstathiou, J. Anal. At. Spectrom., 1995, 10, 221 RSC.
  6. L. M. Voth-Beach and D. E. Shrader, J. Anal. At. Spectrom., 1987, 2, 45 RSC.
  7. X. Q. Shan and B. Wen, J. Anal. At. Spectrom., 1995, 10, 791 RSC.
  8. B. Welz, G. Schlemmer and J. R. Mudakavi, J. Anal. At. Spectrom., 3, 695 Search PubMed.
  9. G. Bozsai, G. Schlemmer and Z. Grobenski, Talanta, 1990, 37, 545 CrossRef CAS.
  10. J. G. Sen Gupta and J. L. Bouvier, Talanta, 1995, 269 CrossRef CAS.
  11. S. Callio, At. Spectrosc., 1980, 1, 80 CAS.
  12. Techniques in Graphite furnace Atomic Absorption Spectrometry, Perkin-Elmer, Ridgefield, CT, PN 0993–8150, 1985 Search PubMed.
  13. M. W. Hinds and K. W. Jackson, J. Anal. At. Spectrom., 1987, 2, 441 RSC.
  14. Y. Y. Zong, P. J. Parsons and W. Slavin, Spectrochim. Acta, Part B, 1994, 49, 1667 CrossRef.
  15. USEPA Test methods for evaluating solid waste: laboratory manualphysical/chemical methods, SW-846, US EPA: Washington, DC, 3rd ed., 1986 Search PubMed.
  16. Z. A. A. Khammas and M. H. Farhan, Talanta, 1989, 36, 1027 CrossRef CAS.
  17. C. Cabrera, M. C. Lopez, C. Gallego, M. L. Lorenzo and E. Lillo, Sci. Total Environ., 1995, 159, 17 CrossRef CAS.
  18. J. F. Jaworski, in Lead, Mercury, Cadmium and Arsenic in the Environment, ed. Hutchinson, T. C., and Meema, K. M., Wiley, New York, 1987, pp. 3–16 Search PubMed.
  19. J. M. Concon, in Food Toxicology: Contaminants and Additives, Marcel Dekker, New York, 1988, p. 18 Search PubMed.
  20. A. H. Bu-Olayan, S. N. Al-Yakoob and S. Alhazeem, Sci. Total Environ., 1996, 181, 209 CrossRef CAS.
  21. D. C. Manning and W. Slavin, Appl. Spectrosc., 1984, 7, 1.
  22. B. He and Z. M. Ni, J. Anal. At. Spectrom., 1996, 11, 165 RSC.
  23. Y. Xu and Y. Z. Liang, J. Anal. At. Spectrom., 1997, 12, 471 RSC.
  24. B. V. L'vov, Spectrochim. Acta, Part B, 1978, 33, 153 CrossRef.
  25. W. Slavin, D. C. Manning and G. R. Carnick, Talanta, 1989, 36, 171 CrossRef CAS.
  26. B. V. L'vov, Spectrochim. Acta, Part B, 1984, 39, 159.
  27. W. Slavin and D. C. Manning, Spectrochim. Acta, Part B, 1982, 37, 955 CrossRef.
  28. W. Frech, N. G. Zhou and E. Lundberg, Spectrochim. Acta, Part B, 1982, 37, 691 CrossRef.
  29. J. McNally and J. A. Holcombe, Anal. Chem., 1987, 59, 1105 CrossRef CAS.
  30. Y. Z. Liang, Z. M. Ni and X. P. Yan, Spectrochim. Acta, Part B, 1995, 50, 725 CrossRef.
  31. J. McNally and J. A. Holcombe, Anal. Chem., 1991, 63, 1918 CrossRef CAS.
  32. K. Ouishi, K. Yasuda, Y. Morishige and K. Hirokawa, Fresenius' J. Anal. Chem., 1994, 348, 195 CrossRef CAS.
  33. X. P. Yan and Z. M. Ni, Spectrochim. Acta, Part B, 1993, 48B, 1315 CAS.
  34. D. O. Hayward and B. M. W. Trapnell, in Chemisorption, Butterworths, London, 1964 Search PubMed.
  35. R. E. Sturgeon, Fresenius' J. Anal. Chem., 1986, 324, 807 CrossRef CAS.
  36. J. R. Arthur and A. Y. Cho, Surf. Sci., 1973, 36, 641 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.