Vaporization of Radium and Other Alkaline Earth Elements in Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

ROY ST. C. MCINTYRE, D. CONRAD GRÉGOIRE and CHUNI L. CHAKRABARTI


Abstract

Reported are the mechanism of vaporization and optimum experimental conditions for the determination of Ra and other alkaline earth elements (Be, Mg, Ca, Sr and Ba) by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Calculated and published data along with new experimental results suggest that these elements are vaporized from the surface of the graphite tube as oxides. These oxides are then transported to the argon plasma where dissociation and ionization take place. Appearance temperatures and maximum pyrolysis temperatures obtained experimentally generally agree with values obtained using graphite furnace atomic absorption spectrometry (GFAAS). For Ra, the optimum pyrolysis and vaporization temperatures were 1400 and 2500 °C, respectively. Diluted (1:500) seawater, used as a physical carrier, was effective in improving sensitivity when used in small quantities, but caused significant suppression of the Ra signal when the analyte was co-vaporized with quantities of salt in excess of 40 µg. An absolute limit of detection of 1.7 fg was obtained corresponding to 34 fg ml-1 in a 50 µl sample.


References

  1. J. S. Alvarado, K. A. Orlandini and M. D. Erickson, J. Radioanal. Nucl. Chem., 1995, 194, 163 CAS.
  2. R. G. Ditchburn and N. E. Whitehead, J. Radioanal. Nucl. Chem., 1995, 189, 115 CAS.
  3. A. S. Cohen and R. K. O'Nions, Anal. Chem., 1991, 63, 2705 CrossRef CAS.
  4. A. M. Volpe, J. A. Olivares and M. T. Murrell, Anal. Chem., 1991, 63, 913 CrossRef CAS.
  5. N. A. Chieco, D. C. Bogen and E. D. Knutson, Environmental Measurements Laboratory Procedures Manual, 27th edn., HASL-300, US Department of Energy, New York, 1990 Search PubMed.
  6. R. Blackburn and M. S. Al-Masri, Analyst, 1993, 118, 873 RSC.
  7. V. F. Hodge and G. A. Laing, Radiochim. Acta, 1994, 64, 211 CAS.
  8. D. J. Gray, S. Wang and R. Brown, Appl. Spectrosc., 1994, 48, 1316 CAS.
  9. J. S. Alvarado and M. D. Erickson, J. Anal. At. Spectrom., 1996, 11, 923 RSC.
  10. M. Smith, E. Wyse and D. Koppenaal, J. Radioanal. Nucl. Chem., 1992, 160, 341 CAS.
  11. R. E. Sturgeon, C. L. Chakrabarti and C. H. Langford, Anal. Chem., 1976, 48, 1792 CrossRef CAS.
  12. D. L. Styris and D. A. Redfield, Anal. Chem., 1987, 59, 2897 CrossRef CAS.
  13. L. J. Prell, D. L. Styris and D. A. Redfield, J. Anal. At. Spectrom., 1991, 6, 25 RSC.
  14. C. Duval, Inorganic Thermogravimetric Analysis, 2nd edn., Elsevier Publishing Co., New York, 1963 Search PubMed.
  15. J. L. Margrave, The Characterization of High-Temperature Vapors, John Wiley & Sons, USA, 1967, pp. 555 Search PubMed.
  16. R. C. Hutton, J. M. Ottaway, M. S. Epstein and T. C. Rains, Analyst, 1977, 102, 658 RSC.
  17. T. Kántor, L. Bezúr, E. Pungor and J. D. Winefordner, Spectrochim. Acta, Part B, 1983, 38, 581 CrossRef.
  18. G. E. Moore, H. W. Allison and J. D. Struthers, J. Chem. Phys., 1950, 18, 1572 CrossRef CAS.
  19. R. F. Porter, W. A. Chupka and M. G. Inghram, J. Chem. Phys., 1955, 23, 1347 CAS.
  20. V. K. Nagdaev and Y. F. Bukreev, Zhurnal Prikladnoi Spektroskopii, 1980, 33, 618 Search PubMed.
  21. F. Jasim and M. M. Barbooti, Talanta, 1981, 28, 353 CrossRef CAS.
  22. W. Frech, E. Lundberg and A. Cedergren, Prog. Anal. At. Spectrosc., 1985, 8, 257 Search PubMed.
  23. J. P. Byrne, C. L. Chakrabarti, S. B. Chang, C. K. Tan and A. H. Delgado, Fresenius' Z. Anal. Chem., 1986, 324, 448 CrossRef CAS.
  24. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 4th edn., John Wiley & Sons, US, 1980, pp. 1396 Search PubMed.
  25. L. Gmelin, Gmelin Handbuch der Inorganischen Chemie, 8. Auflage, Radium, Springer-Verlag, Berlin, Germany, 1977 Search PubMed.
  26. R. T. Lowson, Thermochim. Acta, 1985, 91, 185 CrossRef CAS.
  27. V. Ya. Chekhovskoi and Kh. Irgashov, Russian J. Phys. Chem., 1990, 64, 2 Search PubMed.
  28. H. Vanhoe, C. Vandecasteele, B. Desmet and R. Dams, J. Anal. At. Spectrom., 1988, 3, 703 RSC.
  29. W. Slavin, Graphite Furnace AAS: A Source Book, Perkin-Elmer Corp., USA, 1984, pp. 229 Search PubMed.
  30. B. Welz, Atomic Absorption Spectrometry, 2nd edn., VCH, 1985, pp. 506 Search PubMed.
  31. C. A. Helsbey, Talanta, 1977, 24, 46 CrossRef.
  32. D. C. Grégoire, M. Lamoureux, C. L. Chakrabarti, S. Al-Maawali and J. P. Byrne, J. Anal. At. Spectrom., 1992, 7, 579 RSC.
  33. F. J. M. J. Maessen, J. Balke and R. Massee, Spectrochim. Acta, Part B, 1978, 33, 311 CrossRef.
  34. M. D. Y. Meah, M.Sc. Thesis, Carleton University, Ottawa, Ontario, 1981.
  35. D. M. Hughes, C. L. Chakrabarti, D. M. Goltz, D. C. Grégoire, R. E. Sturgeon and J. P. Byrne, Spectrochim. Acta, Part B, 1995, 50, 425 CrossRef.
  36. CRC Handbook of Chemistry and Physics 76th edn., CRC Press, USA, 1995–1996.
Click here to see how this site uses Cookies. View our privacy policy here.