Transmission of X-rays From an Extended X-ray Source Through Parallel-bore Glass Capillary Waveguides: Implications for the Design of a Laboratory X-ray Microprobe

(Note: The full text of this document is currently only available in the PDF Version )

NORMAN R. CHARNLEY and PHILIP J. POTTS


Abstract

Results are presented from a ray tracing program, used to model the transmission efficiency of parallel-bore glass capillaries configured as X-ray waveguides and coupled to X-ray tube sources of finite size. A detailed explanation of the transmission mechanisms is given in terms of regions of the source that contribute to the transmission of rays. Results (Fig. 7) predict that the highest flux is observed when the capillary is in contact with the source. As the capillary is moved away from the source, transmitted intensities first fall off, and then rise again as a larger area of the source is able to contribute rays for transmission. Intensities continue to rise with increase in the source-to-capillary distance until the point is reached where the entire area of the source can contribute to the transmission characteristics. Transmitted intensities then begin to fall off rapidly. The results indicate that transmission target tubes may have some favourable characteristics in this application and that the transmission efficiency of polycapillary (Kumakhov) lenses should not be seriously compromised, provided that the source size, in relation to source-to-lens distance, is optimised.


References

  1. D. H. Bilderback and D. J. Thiel, Rev. Sci. Instrum., 1995, 66, 2059 CrossRef CAS.
  2. K. Janssens, L. Vincze, J. Rubio, F. Adams and G. Bernasconi, J. Anal. At. Spectrom., 1994, 9, 151 RSC.
  3. N. R. Charnley, P. J. Potts and J. V. P. Long, J. Anal. At. Spectrom., 1994, 9, 1185 RSC.
  4. L. Vincze, K. Janssens, F. Adams and A. Rindby, X-ray Spectrom., 1995, 24, 27 CAS.
  5. G. S. Cargill, III, K. Hwang, J. W. Lam, P.-C. Wang, E. Liniger and I. C. Noyan, SPIE, 1995, 2516, 120 Search PubMed.
  6. C. M. Dozier, D. A. Newman, J. V. Gilfrich, R. K. Freitag and J. P. Kirkland, Adv. X-ray Anal., 1994, 37, 499 Search PubMed.
  7. D. A. Brewe, S. M. Heald, B. Barg, F. C. Brown, K. H. Kim and E. A. Stern, SPIE, 1995, 2516, 197 Search PubMed.
  8. D. A. Carpenter, M. A. Taylor and R. L. Lawson, J. Trace Microprobe Tech., 1995, 13, 141 Search PubMed.
  9. B. K. Rath, R. Youngman and C. A. MacDonald, Rev. Sci. Instrum., 1994, 65, 3393 CrossRef CAS.
  10. Y. Yiming, D. Xunliang, W. Dachun, C. Baozhen, Z. Shengji and L. Andong, SPIE, 1994, 2321, 56 Search PubMed.
  11. A. Attaelmanan, P. Voglis, A. Rindby, S. Larsson and P. Engstrom, Rev. Sci. Instrum., 1995, 66, 24 CrossRef CAS.
  12. E. A. Stern, Z. Kalman, A. Lewis and K. Lieberman, Appl. Opt., 1988, 27, 5135 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.