Application of Laser Sampling Microprobe Inductively Coupled Plasma Mass Spectrometry to theIn Situ Trace Element Analysis of Selected Geological Materials

(Note: The full text of this document is currently only available in the PDF Version )

ZHONGXING CHEN, WILL DOHERTY and D. CONRAD GRÉGOIRE


Abstract

A method is described for the direct solid sampling and analysis of geological materials by laser microprobe inductively coupled plasma mass spectrometry (LAM-ICP-MS). An Nd:YAG laser operated in the Q-switched mode at a fundamental wavelength of 1064 nm was used. Both the sample stage and the laser with its floor-mounted power supply were controlled by a personal computer in a mouse-driven Windows environment. The signal intensity was optimized to the maximum level by adjusting the nebulizer gas flow rate and ion optics using NIST 610 glass. Sample was pre-ablated for a few seconds to remove any surface contamination. NIST 610 or 612 silicate glass was used as a calibration standard and Ca, Ce, Si or Mn were used as an internal standard to correct for signal drift, differences in transport efficiency and sampling yields for different geological materials. Trace element concentrations in apatite, monazite, chromite, olivine, concretion and fused buttons of silicate rock powder were determinedin situ with a spatial resolution of 60–150 µm, depending on the materials analysed. Good precision and accuracy and low solid limits of detection were obtained.


References

  1. J. F. Ready, Phys. Rev. A, 1965, 137, 620 CAS.
  2. S. A. Darke and J. F. Tyson, J. Anal. At. Spectrom., 1993, 8, 145 RSC.
  3. L. Moenke-Blankenburg, Laser Microanalysis, Wiley, New York, 1989, pp. 1–288 Search PubMed.
  4. K. Dittrich and R. Wennrich, Prog. Anal. At. Spectrosc., 1984, 7, 139 Search PubMed.
  5. T. Ishizuka and Y. Uwamino, Anal. Chem., 1980, 52, 125 CrossRef CAS.
  6. P. G. Mitchell, J. Sneddon and L. J. Radziemski, Appl. Spectrosc., 1987, 41, 141 CAS.
  7. S. A. Darke, S. E. Long, C. J. Pickford and J. F. Tyson, J. Anal. At. Spectrom., 1989, 4, 715 RSC.
  8. M. Thompson, S. Chenery and L. Brett, J. Anal. At. Spectrom., 1989, 4, 11 RSC.
  9. A. L. Gray, Analyst, 1985, 110, 551 RSC.
  10. P. Arrowsmith, Anal. Chem., 1987, 59, 1437 CrossRef CAS.
  11. E. F. Cromwell and P. Arrowsmith, Anal. Chem., 1995, 67, 131 CrossRef CAS.
  12. S. E. Jackson, H. P. Longerich, G. R. Dunning and B. J. Fryer, Can. Mineral., 1992, 30, 1049 Search PubMed.
  13. J. Marshall, J. Franks, I. Abell. and C. Tye, J. Anal. At. Spectrom., 1991, 6, 145 RSC.
  14. W. T. Perkins, R. Fuge and N. J. G. Pearce, J. Anal. At. Spectrom., 1991, 6, 445 RSC.
  15. K. E. Jarvis and J. G. Williams, Chem. Geol., 1993, 106, 251 CrossRef.
  16. S. Chenery and J. M. Cook, J. Anal. At. Spectrom., 1993, 8, 299 RSC.
  17. B. J. Fryer, S. E. Jackson and H. P. Longerich, Can. Mineral., 1995, 33, 303 Search PubMed.
  18. C. G. Ryan, D. R. Cousens, S. H. Sie, W. L. Griffin and G. F. Suter, Nucl. Instrum. Methods, Sect. B, 1990, 47, 55 Search PubMed.
  19. K. Govindaraju, Geostand. Newsl., 1994, 18, 1 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.