Removal of Air Interference in Laser-induced Breakdown Spectrometry Monitored by Spatially and Temporally Resolved Charge-coupled Device Measurements

(Note: The full text of this document is currently only available in the PDF Version )

M. MILÁN, J. M. VADILLO and J. J. LASERNA


Abstract

Laser-induced breakdown spectrometry is a suitable method for the direct in-process measurement of materials composition. The emission spectrum from the plasma includes information not only on the analysis area but also on the surrounding atmosphere, mainly lines corresponding to O, N and C if the experiments are being carried out in air at atmospheric pressure. These emission lines could interfere with the sample spectrum. Although working under vacuum conditions or the use of controlled atmospheres can be considered to be the best choice, in most practical applications working in air at atmospheric pressure is the common way of analysis. A study was undertaken to evaluate the removal of air interferences in poly(methyl methacrylate) samples by using the temporal and spatial resolution of gated charge-coupled devices, without any sample treatment or alteration of the experimental set-up.


References

  1. L. M. Cabalín, N. Calvo, L. Ayala and J. J. Laserna, Quím. Anal., 1993, 12, 96 Search PubMed.
  2. J. J. Laserna, N. Calvo and L. M. Cabalín, Anal. Chim. Acta, 1993, 289, 113 CrossRef CAS.
  3. J. R. Wachter and D. A. Cremers, Appl. Spectrosc., 1987, 41, 1042 CAS.
  4. J. B. Morris, B. E. Forch and A. W. Miziolek, Appl. Spectrosc., 1990, 44, 1040 CAS.
  5. K. C. Ng, N. L. Ayala, J. B. Simeonsson and J. D. Winefordner, Anal. Chim. Acta, 1992, 269, 123 CrossRef CAS.
  6. Y. Iida, Spectrochim. Acta, Part B, 1990, 45, 1353 CrossRef.
  7. Y. Talmi, H. P. Sieper and L. Moenke-Blankenburg, Anal. Chim. Acta, 1981, 127, 71 CrossRef CAS.
  8. E. H. Piepmeier and D. E. Osten, Appl. Spectrosc., 1971, 25, 642 CAS.
  9. B. Brosda, R. Castell-Muñoz and H.-J. Kunze, J. Phys. D, 1990, 23, 735 Search PubMed.
  10. H. Kurniawan, T. Kobayashi and K. Kagawa, Appl. Spectrosc., 1992, 46, 581 CAS.
  11. K. G. Grant and G. L. Paul, Appl. Spectrosc., 1990, 44, 1349.
  12. M. Owens and V. Majidi, Appl. Spectrosc., 1991, 45, 1463 CAS.
  13. Y.-I. Lee, T. L. Thiem, G. Kim, Y. Teng and J. Sneddon, Appl. Spectrosc., 1992, 46, 11.
  14. J. Hermann, C. Boulmer-Leborgne, B. Dubreil and J. N. Mihailescu, J. Appl. Phys., 1993, 74, 5 CrossRef CAS.
  15. M. R. Joseph, N. Xu and V. Majidi, Spectrochim. Acta, Part B, 1994, 49, 89 CrossRef.
  16. L. J. Radziemski, T. R. Loree, D. A. Cremers and N. M. Hoffman, Anal. Chem., 1983, 55, 1246 CAS.
  17. E. Stoffels, P. van de Weijer and J. van der Mullen, Spectrochim. Acta, Part B, 1991, 46, 11 CrossRef.
  18. R. J. Nordstrom, Appl. Spectrosc., 1995, 49, 1490 CAS.
  19. X. L. Mao, M. A. Shannon, A. J. Fernandez and R. E. Russo, Appl. Spectrosc., 1995, 49, 1054 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.