Characterization of an Ultrasonic Nebulizer–Membrane Separation Interface with Inductively Coupled Plasma Mass Spectrometry for the Determination of Trace Elements by Solvent Extraction

(Note: The full text of this document is currently only available in the PDF Version )

I. B. BRENNER, A. ZANDER, M. PLANTZ and J. ZHU


Abstract

The problems of using an ultrasonic nebulizer–membrane desolvation separation interface (USN–MEMSEP) for the determination of trace elements by solvent extraction and ICP-MS were studied. The interference effects of chloroform and the behavior of trace metal chelates as a function of MEMSEP temperature and sweep gas were studied. In comparison with conventional nebulization, the use of the interface resulted in an approximately 10-fold increase in analyte signals. Although the interface removed much of the chloroform vapor from the aerosol stream by selective permeation and argon counter gas purging, residual solvent resulted in polyatomic ion interferences that affected the limits of detection. The addition of a small flow of oxygen to the auxiliary gas minimized these interferences and prevented carbon deposition on the torch tubes and sampler cones. The40Ar12C+ signal was attenuated, but those of 40Ar16O+ and CeO+/Ce+ increased slightly. An increase in MEMSEP desolvation temperature resulted in a decrease in 35Cl16O+ and 40Ar12C+ signals due to enhanced rejection of chloroform. Thermal desolvation of the metal organic compound vapors and aerosols resulted in a decrease in the ion counts of the chelated analytes with increasing temperature, probably due to their volatilization and rejection from the membrane. An internal standard could be used to compensate for the responses to changes in temperature. Signal responses of the metal dithiocarbamates to changes in MEMSEP desolvation temperature were significantly different to those in chloroform solutions of oil-based standards, and as a consequence the latter were unsuitable for calibration. The advantages of the technique include matrix elimination, marked reduction in polyatomic carbide ions, enhanced LODs and reduced plasma interferences.


References

  1. M. S. Cresser, Solvent Extraction in Flame Spectroscopic Analysis, Butterworth, London, 1978 Search PubMed.
  2. M. W. Skougstad, M. J. Fishman, L. C. Friedman, D. E. Erdmann and S. S. Duncan, in Techniques of Water-Resources Investigations of the United States Geological Survey, US Geological Survey. Washington, DC, 1978, ch. A1 Search PubMed.
  3. A. Boorn and R. F. Browner, Anal. Chem., 1982, 54, 1402 CrossRef CAS.
  4. Y. Q. Tang, Y. P. Du, J. C. Shao, W. Tao and M. H. Zhu, Spectrochim. Acta, Part B, 1992, 47, 1353 CrossRef.
  5. F. J. M. J. Maessen, G. Kreunig and J. Balke, Spectrochim. Acta, Part B, 1984, 41, 3 CrossRef.
  6. M. W. Blades and B. L. Caughlin, Spectrochim. Acta, Part B, 1985, 40, 579 CrossRef.
  7. D. G. Weir and M. W. Blades, J. Anal. At. Spectrom., 1994, 4, 1323 RSC.
  8. A. W. Boorn, M. S. Cresser and R. F. Browner, Spectrochim. Acta, Part B, 1980, 35, 823 CrossRef.
  9. K. D. Ohls, J. Flock and H. Loepp, ICP Inf. Newsl., 1988, 14, 83 Search PubMed.
  10. B. Magyar, P. Lienemann and H. Vonmont, Spectrochim. Acta, Part B, 1986, 41, 27 CrossRef.
  11. D. W. Hausler and L. T. Taylor, Anal. Chem., 1981, 53, 1223 CrossRef CAS.
  12. T. J. Brotherton, P. E. Pfannerstill, J. T. Creed, D. T. Heitkemper, J. A. Caruso and S. E. Pratsinis, J. Anal. At. Spectrom., 1989, 4, 341 RSC.
  13. R. I. Botto, J. Anal. At. Spectrom., 1993, 8, 51 RSC.
  14. D. R. Wiederin, R. S. Houk, R. K. Winge and A. P. D'Silva, Anal. Chem., 1990, 62, 1150.
  15. L. C. Alves, D. R. Wiederin and R. S. Houk, Anal. Chem., 1992, 64, 1164 CrossRef CAS.
  16. L. C. Alves, M. G. Minnich, D. R. Wiederin and R. S. Houk, J. Anal. At. Spectrom., 1994, 9, 399 RSC.
  17. G. R. Bradford and D. Bakhtar, Environ. Sci. Technol., 1991, 25, 1704 CAS.
  18. C. W. McLeod, A. Otsuki, K. Okamoto, H. Haraguchi and K. Fuwa, Analyst, 1981, 106, 419 RSC.
  19. Z. Zhuang, X. Wang, P. Yang, C. Yang and B. Huang, J. Anal. At. Spectrom., 1994, 9, 779 RSC.
  20. A. Gustavsson, Spectrochim. Acta, Part B, 1987, 42, 111 CrossRef.
  21. K. Backstrom, A. Gustavsson and P. Hietala, Spectrochim. Acta, Part B, 198, 44, 104 Search PubMed.
  22. H. Tao and A. Miyazaki, J. Anal. At. Spectrom., 1995, 10, 1 Search PubMed.
  23. R. I. Botto and J. J. Zhu, J. Anal. At. Spectrom., 1994, 9, 905 Search PubMed.
  24. A. Wyttenbach and S. Bajo, Anal. Chem., 1975, 47, 1813 Search PubMed.
  25. J. D. Kinrade and J. C. Van Loon, Anal. Chem., 1974, 46, 1894 Search PubMed.
  26. R. R. Brooks, B. J. Presley and I. R. Kaplan, Talanta, 1967, 14, 809 Search PubMed.
  27. I. Kojima, K. Inagaki and S. Kondo, J. Anal. At. Spectrom., 1994, 9, 1161 Search PubMed.
  28. S. R. Koirtyohann and J. W. Wen, Anal. Chem., 1986, 45, 1973 Search PubMed.
  29. R. E. Sturgeon, S. S. Berman, A. Desaulnier and D. S. Russell, Talanta, 1980, 27, 85 Search PubMed.
  30. I. B. Brenner, A. Zander and J. Zhu, Fresenius'. J. Anal. Chem., 1996, 355, 774 Search PubMed.
  31. J. M. Motooka, Appl. Spectrosc., 1998, 42, 1293 Search PubMed.
  32. J. G. Viets, Anal. Chem., 1978, 50, 1097 Search PubMed.
  33. Cetac MDX 100 Membrane Desolvator Instruction Manual, 1995, Cetac, Omaha, NE Search PubMed.
  34. J. R. Castillo, J. Delfa, J. M. Mir, C. Bendicho, M. De la Guardia, A. R. Mauri, C. Mongay and E. Martinez, J. Anal. At. Spectrom., 1990, 5, 325 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.