Evaluation of Electrothermal Vaporization, Emission Intensity–Time–Wavelength Measurement and Time Resolution Combined With an Axially Viewed Horizontal Inductively Coupled Plasma Using an Echelle Spectrometer With Wavelength Modulation

(Note: The full text of this document is currently only available in the PDF Version )

YOSHISUKE NAKAMURA, KATSUYUKI TAKAHASHI, OSAMU KUJIRAI and HARUNO OKOCHI


Abstract

ETV using a tungsten boat furnace was studied in combination with an axially viewed (end-on) horizontal ICP for improvement in sensitivity. A high-dispersion echelle spectrometer in which wavelength modulation and second-derivative signal detection are incorporated was used. Time-resolved spectra were obtained by using an emission intensity–time–wavelength profiling method. In order to obtain a high S/B, the heating programme of the ETV system, the flow rate of the transport gas and the delay time are important in addition to the plasma conditions. Once the optimum conditions have been established, reproducible peak appearance times can be obtained. The net emission intensity, repeatability and limit of detection (LOD) obtained by ETV end-on ICP-AES were compared with those obtained by end-on pneumatic nebulization ICP-AES. The improved LODs were close to those obtained by pneumatic nebulization ICP-MS. Discrimination between the Fe impurity in the tungsten boat and spiked Fe was possible using time resolution. Trace amounts of Mn and Al in a large amount of Mo and Fe, respectively, were time-resolved at neighbouring wavelengths. The chemical species of the vaporized materials were identified by X-ray microanalysis. The main disadvantage of the method is that nitric and sulfuric acids cannot be used.


References

  1. D. R. Demers, Appl. Spectrosc., 1979, 33, 584 CAS.
  2. H. Kawaguchi, T. Tanaka and A. Mizuike, Bunseki Kagaku, 1984, 33, 129 CAS.
  3. M. T. C. de Loos-Vollebregt, J. J. Tiggelman and L. de Galan, Spectrochim. Acta, Part B, 1988, 43, 773 CrossRef.
  4. Y. Nakamura, K. Takahashi, O. Kujirai, H. Okochi and C. W. McLeod, J. Anal. At. Spectrom., 1994, 9, 751 RSC.
  5. R. F. Browner and A. W. Boorn, Anal. Chem., 1984, 56, 786A CAS.
  6. S. E. Long, R. D. Snook and R. F. Browner, Spectrochim. Acta, Part B, 1985, 40, 553 CrossRef.
  7. H. M. Swaidan and G. D. Christian, Anal. Chem., 1984, 56, 120 CrossRef CAS.
  8. H. Matusiewicz and R. M. Barnes, Spectrochim. Acta, Part B, 1985, 40, 29 CrossRef.
  9. D. R. Hull and G. Horlick, Spectrochim. Acta, Part B, 1984, 39, 843 CrossRef.
  10. J. Alvarado, P. Cavalli, N. Omenetto, G. Rossi and J. M. Ottaway, J. Anal. At. Spectrom., 1987, 2, 357 RSC.
  11. J. M. Ren and E. D. Salin, J. Anal. At. Spectrom., 1993, 8, 59 RSC.
  12. D. E. Nixon, V. A. Fassel and R. N. Kniseley, Anal. Chem., 1974, 46, 210 CrossRef CAS.
  13. H. Kawaguchi, G.-Y. Zhan and A. Mizuike, Bunseki Kagaku, 1986, 35, 972.
  14. A. Okada and N. Hirate, Bunseki Kagaku, 1988, 37, T205 CAS.
  15. M. W. Tikkanen and T. M. Niemczyk, Anal. Chem., 1986, 58, 366 CrossRef CAS.
  16. M. W. Tikkanen and T. M. Niemczyk, Anal. Chem., 1985, 57, 2896 CrossRef CAS.
  17. M. W. Tikkanen and T. M. Niemczyk, Anal. Chem., 1984, 56, 1997 CrossRef CAS.
  18. P. Verrept, C. Vandecasteele, G. Windels and R. Dams, Spectrochim. Acta, Part B, 1991, 46, 99 CrossRef.
  19. P. Verrept, E. Courtijn, C. Vandecasteele, G. Windels and R. Dams, Anal. Chim. Acta, 1992, 257, 223 CrossRef CAS.
  20. Y. Nakamura, K. Takahashi, O. Kujirai and H. Okochi, J. Anal. At. Spectrom., 1990, 5, 501 RSC.
  21. International Centre for Diffraction Data, Powder Diffraction File, Alphabetical Indexes, Inorganic Phases, Sets 1–43, International Centre for Diffraction Data, Newtown Square, PA, 1991 Search PubMed.
  22. S. E. Emmett, J. Anal. At. Spectrom., 1988, 3, 1145 RSC.
  23. K. Sakata and K. Kawabata, Spectrochim. Acta, Part B, 1994, 49, 1027 CrossRef.
  24. Nihon Kagaku Kai, Kagaku Binran, 3rd Revision, Basic Book, Volume I, Maruzen, Tokyo, 1984 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.