Use of Laser Ablation Inductively Coupled Plasma Mass Spectrometry for Fingerprinting Scene of Crime Evidence

(Note: The full text of this document is currently only available in the PDF Version )

R. J. WATLING, B. F. LYNCH and D. HERRING


Abstract

The requirement to uniquely characterise and compare physical evidence from crime scenes is a major task in forensic science. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP-MS) was investigated for its potential to provide data on relative trace elemental compositions to achieve this aim. Glass and steel samples were examined as they frequently occur as physical evidence and represent two distinctly dissimilar sample types. A fine focus Nd:YAG laser was used enabling specimens of approximately 50 µm in diameter to be examined. Ablation protocols and optimum compromise sets of laser parameters were established for the analysis of both sample types using both free running and Q-switched mode of laser operation. Mass spectra acquired under these conditions were reproducible and were generated in a fraction of the time required for the conventional solution analyses. Sixty-two glass samples were examined of which thirty-one were float glasses, four were sheet glasses and twenty-seven were container glasses. The steel samples examined were drillings from sixty-nine sources and included steel from safes, firearm barrels, tools, angle iron, rods and crowbars. The LA–ICP-MS method is at present an essentially qualitative technique and relies on comparison of trace element assemblages or ratios. Samples can be conveniently compared by direct overlay of spectra or interpretive software can be used. Software facilitating the inter-comparison of three elements simultaneously (ternary plots) in large groups of samples was used to establish both the reproducibility of the ‘fingerprint’ and the uniqueness of the inter-element associations. Results have shown that robust analytical procedures have been developed which reliably discriminate both steel and glass samples and could have direct application for the examination of a wide range of other crime scene evidence.


References

  1. D. A. Hickman, Anal. Chem., 1984, 56(7), 844A CAS .
  2. H. J. Walls, Forensic Science, Sweet and Maxwell, London, 2nd edn., 1968, p. 30 Search PubMed .
  3. F. Brewster, J. Thorpe, G. Gettinby and B. Caddy, J. Forensic Sci., 1985, 30, 798 Search PubMed .
  4. M.-A. Vaughn and G. Horlick, J. Anal. At. Spectrom., 1989, 4, 45 RSC .
  5. J. Locke and M. Underhill, Forensic Sci. Int., 1985, 27, 247 CrossRef CAS .
  6. Standard Methods of Chemical Analysis, ed. Welcher, F. J., D. Van Nostrand, Canada, 1963, vol. 2, Part B, p. 2229 Search PubMed .
  7. J. Locke and B. R. Elliot, Forensic Sci. Int., 1984, 26, 53 CrossRef .
  8. M. Marcouiller, J. Forensic Sci., 1990, 35, 554 Search PubMed .
  9. J. Andrasko and A. C. Maehly, J. Forensic Sci., 1978, 23, 250 Search PubMed .
  10. R. D. Koons, C. Fiedler and R. C. Rawalt, J. Forensic Sci., 1988, 33, 49 Search PubMed .
  11. T. Catterick and C. D. Wall, Talanta, 1978, 25, 573 CrossRef CAS .
  12. A. Zurhaar and L. Mullings, J. Anal. At. Spectrom., 1990, 5, 611 RSC .
  13. E. R. Denoyer, K. J. Fredeen and J. W. Hager, Anal Chem., 1989, 61, 445A .
  14. L. Moenke-Blankenburg, in Laser Micro Analysis, ed. Winefordner, J. D., and Kolthoff, I. M., John Wiley & Sons, Canada, 1989 Search PubMed .
  15. S. J. B. Reed, Chemical Geol., 1990, 83, 1 Search PubMed .
  16. S. Chenery, A. Hunt and M. Thompson, J. Anal. At. Spectrom., 1992, 7, 647 RSC .
  17. J. G. Williams and K. E. Jarvis, J. Anal. At. Spectrom., 1993, 8, 25 RSC .
  18. J. G. Pearce, W. T. Perkins, I. Abell, G. A. T. Duller and R. Fuge, J. Anal. At. Spectrom., 1992, 7, 53 RSC .
  19. J. S. Crain and D. L. Gallimore, J. Anal. At. Spectrom., 1992, 7, 605 RSC .
  20. W. T. Perkins, N. J. G. Pearce and R. Fuge, J. Anal. At. Spectrom., 1992, 7, 611 RSC .
  21. W. T. Perkins, N. J. G. Pearce and T. E. Jeffries, Geochim. Cosmochim. Acta, 1993, 57, 475 CrossRef CAS .
  22. K. E. Jarvis, A. L. Gray and R. S. Houk, Handbook of Inductively Coupled Plasma Mass Spectrometry, Blackie, Glasgow, 1991, ch. 10 Search PubMed .
  23. R. J. Watling, Rapid Commun. Mass Spectrom., 1996, 10, 130 CrossRef CAS .
  24. R. J. Watling, H. K. Herbert, I. S. Barrow and A. G. Thomas, Analyst, 1995, 120, 1357 RSC .
  25. R. J. Watling, H. K. Herbert and I. D. Abell, Chem. Geol., 1995, 124, 67 CrossRef .
  26. R. J. Watling, H. K. Herbert, D. Delev and I. D. Abell, Spectrochim. Acta, Part B, 1994, 49, 205 CrossRef .
  27. K. Dittrich and R. Wennrich, Prog. Anal. Spectrosc., 1984, 7, 139 Search PubMed .
  28. H. Yasuhara, T. Okano and Y. Matsumura, Analyst, 1992, 117, 395 RSC .
  29. J. Franks, J. Marshall, I. Brown and L. Garden, Anal. Proc., 1992, 29, 23 RSC .
  30. L. Moenke-Blankenburg, T. Schumann, D. Günther, H. M. Kuss and M. Paul, J. Anal. At. Spectrom., 1992, 7, 251 RSC .
Click here to see how this site uses Cookies. View our privacy policy here.