Characterisation and Correction of Instrumental Bias in Inductively Coupled Plasma Quadrupole Mass Spectrometry for Accurate Measurement of Lead Isotope Ratios

(Note: The full text of this document is currently only available in the PDF Version )

IAN S. BEGLEY and BARRY L. SHARP


Abstract

The accuracy and external precision of isotope ratio measurements can be limited by any of a number of instrumental bias factors which include mass bias, pulse pile-up, background effects and mass scale shift. Measured isotope ratios are generally biased from their true value by the interaction of several of these instrumental bias factors. Attainment of accurate isotope ratio measurement requires careful consideration of all possible causes of instrumental bias and adoption of methods for their elimination or correction. The various forms of instrumental bias observed in measurement of the Pb isotope ratios for NIST SRM 981 Natural Lead (Isotopic) were minimised to reveal204Pb:206Pb=0.0592±0.0002, 207Pb:206Pb=0.9148±0.0007, 208Pb:206Pb=2.1709±0.0015 (n=5) compared with certified values of 0.059042±0.000037, 0.91464±0.00033 and 2.1681±0.0008, respectively. The thallium mass bias concentration procedure was employed in obtaining this data. All uncertainties given as 2σ.


References

  1. A. T. Ince, J. G. Williams and A. L. Gray, J. Anal. At. Spectrom., 1993, 8, 899 RSC.
  2. M. E. Ketterer, J. Anal. At. Spectrom., 1992, 7, 1125 RSC.
  3. J. D. Fassett and P. J. Paulsen, Anal. Chem., 1989, 61, 643A CrossRef CAS.
  4. I. S. Begley and B. L. Sharp, J. Anal. At. Spectrom., 1994, 9, 171 RSC.
  5. G. R. Gillson, D. J. Douglas, J. E. Fulford, K. W. Halligan and S. D. Tanner, Anal. Chem., 1988, 60, 1472 CrossRef.
  6. M. A. Vaughan and G. Horlick, Spectrochim. Acta, Part B, 1990, 45, 1301 CrossRef.
  7. B. S. Ross and G. M. Hieftje, Spectrochim. Acta, Part B, 1991, 46, 1263 CrossRef.
  8. J. G. Williams, in Handbook of Inductively Coupled Plasma Mass Spectrometry, ed. Jarvis, K. E., Gray, A. L., and Houk, R. S., Blackie and Son Ltd., Glasgow and London, 1992 Search PubMed.
  9. A. R. Date and D. Hutchison, J. Anal. At. Spectrom., 1987, 2, 269 RSC.
  10. M. Carré, E. Poussel and J.-M. Mermet, J. Anal. At. Spectrom., 1992, 7, 791 RSC.
  11. J.-M. Mermet and J. C. Ivaldi, J. Anal. At. Spectrom., 1993, 8, 795 RSC.
  12. W. G. Bley, Vacuum, 1988, 38, 103 CrossRef CAS.
  13. J. Batey, VG Elemental, Winsford, Cheshire, UK, personal communication.
  14. G. P. Russ and J. M. Bazan, Spectrochim. Acta, Part B, 1987, 42, 49 CrossRef.
  15. C. H. Vincent, Random Pulse Trains, Their Measurement and Statistical Properties, Peter Peregrinus, London, 1973 Search PubMed.
  16. P. D. P. Taylor, P. De Bièvre, A. J. Walder and A. Entwistle, J. Anal. At. Spectrom., 1995, 10, 395 RSC.
  17. M. E. Ketterer, M. J. Peters and P. J. Tisdale, J. Anal. At. Spectrom., 1991, 6, 439 RSC.
  18. H. P. Longerich, B. J. Fryer and D. F. Strong, Spectrochim. Acta, Part B, 1987, 42, 39 CrossRef.
  19. A. J. Walder, I. Platzner and P. A. Freedman, J. Anal. At. Spectrom., 1993, 8, 19 RSC.
  20. A. J. Walder, D. Koller, N. M. Reed, R. C. Hutton and P. A. Freedman, J. Anal. At. Spectrom., 1993, 8, 1037 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.