Toward the Next Generation of Atomic Mass Spectrometers

(Note: The full text of this document is currently only available in the PDF Version )

GARY M. HIEFTJE, DAVID P. MYERS, GANGQIANG LI, PATRICK P. MAHONEY, THOMAS W. BURGOYNE, STEVEN J. RAY and JOHN P. GUZOWSKI


Abstract

Atomic mass spectrometry, embodied principally as ICP mass spectrometry (ICP-MS) and glow discharge mass spectrometry (GDMS), has enjoyed rapid growth during the last decade, yet both methods exhibit shortcomings that would be desirable to reduce or eliminate. Prominent among these shortcomings are drift and limited precision, several troublesome spectral and matrix interferences, and moderate atom-detection efficiency. This last limitation is particularly troublesome when ICP-MS, for example, must be interfaced to analytical systems that deliver extremely small sample volumes or low flow rates or when extremely limited sample sizes must be examined. Such situations are projected to be increasingly common in the next decade because of the importance of biotechnology and nanostructured materials. Overcoming these limitations will require substantial modifications in both sources and mass-spectrometer designs. Sources will be required that are more efficient at sample utilization, aerosol volatilization and atomization and that provide multidimensional information. Similarly, mass spectrometers of the future must be more atom-efficient, should measure all elements and isotopes simultaneously, and must operate on a time scale that is compatible with microsampling and transient-sampling technology. Possible alternative systems that meet these criteria will be outlined and their likely performance assessed. Greatest emphasis is placed on time-of-flight mass spectrometry coupled with an ICP source.


References

  1. S. A. McLuckey, G. L. Glish, D. C. Duckworth and R. K. Marcus, Anal. Chem., 1992, 64, 1606 CrossRef CAS.
  2. D. C. Duckworth, C. M. Barshick, D. H. Smith and S. A. McLuckey, Anal. Chem., 1994, 66, 92 CrossRef CAS.
  3. D. W. Koppenaal, C. J. Barinaga and M. R. Smith, J. Anal. At. Spectrom., 1994, 9, 1053 RSC.
  4. G. C. Eiden, C. J. Barinaga and D. W. Koppenaal, J. Anal. At. Spectrom., 1996, 11, 317 RSC.
  5. C. M. Barshick and J. R. Eyler, J. Am. Soc. Mass Spectrom., 1992, 3, 122 CrossRef CAS.
  6. R. K. Marcus, P. R. Cable, D. C. Duckworth, M. V. Buchanan, J. M. Pochkowski and R. R. Weller, Appl. Spectrosc., 1992, 46, 1327 CAS.
  7. C. H. Watson, J. Wronka, F. H. Laukien, C. M. Barshick and J. R. Eyler, Spectrochim. Acta, Part B, 1993, 11, 1445 CrossRef.
  8. C. H. Watson, J. Wronka, F. H. Laukien, C. M. Barshick and J. R. Eyler, Anal. Chem., 1993, 65, 2801 CrossRef CAS.
  9. T. W. Burgoyne, G. M. Hieftje and R. A. Hites, ‘Design of a Mattauch–Herzog Array Detector Mass Spectrometer for Atomic Mass Spectrometry’, 41st ASMS Conference on Mass Spectrometry and Allied Topics, San Francisco, CA, ASMS, Santa Fe, NM, USA, 1993, paper #WP200 Search PubMed.
  10. T. W. Burgoyne, G. M. Hieftje and R. A. Hites, J. Am. Soc. Mass Spectrom., 1996, in the press Search PubMed.
  11. E. F. Cromwell and P. Arrowsmith, J. Am. Soc. Mass Spectrom., 1996, 7, 458 CrossRef CAS.
  12. J. A. Hill, J. E. Biller, S. A. Martin, K. Biemann, K. Yoshidome and K. Sato, Int. J. Mass Spectrom. Ion Process, 1989, 92, 211 CrossRef CAS.
  13. D. M. Murphy and K. Mauersberger, Rev. Sci. Instrum., 1985, 56, 220 CrossRef CAS.
  14. D. M. Murphy and K. Mauersberger, Int. J. Mass Spectrom. Ion Process, 1987, 76, 85 CrossRef CAS.
  15. W. C. Wiley and I. H. McLaren, Rev. Sci. Instrum., 1955, 26, 1150 CAS.
  16. D. P. Myers, G. Li, P. P. Mahoney and G. M. Hieftje, J. Am. Soc. Mass. Spectrom., 1995, 6, 400 CrossRef.
  17. G. J. O'Halloran and L. W. Walker, Technical Document Report No. ASD TDR 62–644, Parts I and II, Nov., 1964, Bendix Corporation, Research Laboratories Division, Southfield, MI Search PubMed.
  18. P. P. Mahoney, G. Li, S. J. Ray and G. M. Hieftje, J. Am. Soc. Mass Spectrom, 1996, in the press Search PubMed.
  19. D. P. Myers, G. Li, P. P. Mahoney and G. M. Hieftje, J. Am. Soc. Mass Spectrom., 1995, 6, 411 CrossRef.
  20. G. M. Hieftje, J. Anal. At. Spectrom., 1996, 11, 613 RSC.
  21. D. P. Myers, P. P. Mahoney, G. Li and G. M. Hieftje, J. Am. Soc. Mass. Spectrom., 1995, 6, 920 CrossRef CAS.
  22. P. P. Mahoney, Doctoral Dissertation, Indiana University, 1996.
  23. P. P. Mahoney, G. Li and G. M. Hieftje, J. Anal. At. Spectrom., 1996, 11, 401 RSC.
  24. P. P. Mahoney, S. J. Ray, G. Li and G. M. Hieftje, Anal. Chem., 1996, submitted for publication Search PubMed.
  25. D. P. Myers, M. J. Heintz, P. P. Mahoney, G. Li and G. M. Hieftje, Appl. Spectrosc., 1994, 48, 1337 CAS.
  26. P. P. Mahoney, J. P. Guzowski, S. J. Ray and G. M. Hieftje, Appl. Spectrosc., 1996, submitted for publication Search PubMed.
  27. G. Li and G. M. Hieftje, U.S. Patent Application no. 08/434,931, filed May 5, 1995.
Click here to see how this site uses Cookies. View our privacy policy here.