(Boro)Hydride Techniques in Trace Element Speciation

(Note: The full text of this document is currently only available in the PDF Version )

ALAN G. HOWARD


Abstract

A number of applications of the sodium tetrahydroborate(iii) (sodium borohydride) reagent in the determination of arsenic, selenium, sulfur and tin species are reviewed. The reaction of an analyte species with aqueous tetrahydroborate(iii) is most frequently employed to yield a volatile hydride product which can be readily removed from the bulk matrix. This results in the isolation of the analyte from interferents and gives a species which can be readily concentrated and separated from other species. Some simple speciation analyses, such as the differentiation of arsenite and arsenate, can be performed by careful control of reaction conditions. With more complex molecules some of the original chemical structure of the target species (such as a C–As bond) can be conserved in the reaction products, permitting the deduction of further speciation information. Arsenic oxy-anions [RnAsO(OH)3-n, where R=alkyl or aryl] and alkyltin species, for example, yield different arsines (RnAsO(OH)3-n) and stannanes, respectively, which can be cryogenically trapped and subsequently separated by distillation or gas–liquid chromatography. More recently, analyte reactions with tetrahydroborate(iii) have been employed to provide a powerful link between the components employed in hyphenated instrumentation. One of its most significant roles is in the development of HPLC instrumentation where it can be employed to generate gas phase analyte species which are compatible with sensitive and highly selective gas/vapour detection systems such as AAS, AES and ICP-MS. Examples are given in which the tetrahydroborate(iii) reaction link is employed in the coupling of HPLC with AAS. The addition of photochemical oxidation or microwave digestion steps prior to the tetrahydroborate(iii) reaction stage further extends the range of detectable compounds. Whilst the tetrahydroborate(iii) reagent is largely associated with the generation of volatile analyte hydrides, this is not always the case. Cold-trap methods, for example, can be employed to measure some trimethylarsenic compounds by the production of trimethylarsine and alkyltin hydrides can be preconcentrated by solvent extraction. HPLC instrumentation is also described which employs the tetrahydroborate(iii) gas phase/liquid phase link to generate volatile sulfur species which are compatible with flame photometric detection.


References

  1. Z. Fang, S. Xu and G. Tao, J. Anal. At. Spectrom., 1996, 11, 1 RSC.
  2. R. M. Harrison and S. Rapsomanikis, Environmental Analysis using Chromatography Interfaced with Atomic Spectroscopy, Ellis Horwood, Chichester, 1989 Search PubMed.
  3. K. Pyrzynska, Analyst, 1996, 121, 77R RSC.
  4. M. R. Olivas, O. F. X. Donard, C. Camara and P. Quevauviller, Anal. Chim. Acta, 1994, 286, 357 CrossRef.
  5. T. Nakahara, Prog. Anal. At. Spectrosc., 1983, 6, 163 Search PubMed.
  6. J. Dedina and D. L. Tsalev, Hydride Generation Atomic Absorption Spectrometry, Wiley, Chichester, 1995 Search PubMed.
  7. J. E. Ricci, J. Am. Chem. Soc., 1948, 70, 109 CrossRef CAS.
  8. B. Douglas, D. H. McDaniel and J. J. Alexander, Concepts and Models in Inorganic Chemistry, Wiley, New York, 2nd edn., 1983 Search PubMed.
  9. M. H. Arbab-Zavar and A. G. Howard, Analyst, 1980, 105, 744 RSC.
  10. X.-C. Le, W. R. Cullen and K. J. Reimer, Appl. Organomet. Chem., 1992, 6, 161 CrossRef CAS.
  11. A. G. Howard and L. E. Hunt, Anal. Chem., 1993, 65, 2995 CrossRef CAS.
  12. M. G. Cobo-Fernandez, M. A. Palacios, D. Chakraborti, P. Quevauviller and C. Camara, Fresenius' J. Anal. Chem., 1995, 351, 438 CrossRef CAS.
  13. L. Pitts, P. J. Worsfold and S. J. Hill, Analyst, 1994, 119, 2785 RSC.
  14. R. S. Braman and C. C. Foreback, Science, 1973, 182, 1247 CrossRef CAS.
  15. M. O. Andreae, Anal. Chem., 1977, 49, 820 CrossRef CAS.
  16. J. S. Edmonds and K. A. Francesconi, Anal. Chem., 1976, 48, 2019 CrossRef CAS.
  17. A. G. Howard and S. D. W. Comber, Mikrochim. Acta, 1992, 109, 27 CrossRef CAS.
  18. A. G. Howard and M. H. Arbab-Zavar, Analyst, 1981, 106, 213 RSC.
  19. B. Welz and M. Melcher, Analyst, 1984, 109, 573 RSC.
  20. A. E. Smith, Analyst, 1975, 100, 300 RSC.
  21. R. J. A. Van Cleuvenbergen, W. E. Van Mol and F. C. Adams, J. Anal. At. Spectrom., 1988, 3, 169 RSC.
  22. M. Verlinden and H. Deelstra, Fresenius' Z. Anal. Chem., 1979, 296, 253 CrossRef CAS.
  23. F. D. Pierce and H. R. Brown, Anal. Chem., 1976, 48, 693 CrossRef CAS.
  24. F. D. Pierce and H. R. Brown, Anal. Chem., 1977, 49, 1417 CrossRef CAS.
  25. B. Welz and M. Schubert-Jacobs, J. Anal. At. Spectrom., 1986, 1, 23 RSC.
  26. J. W. Hershey and P. N. Keliher, Spectrochim. Acta, Part B, 1986, 41, 713 CrossRef.
  27. B. Welz and M. Melcher, Analyst, 1984, 109, 569 RSC.
  28. G. F. Kirkbright and M. Taddia, Anal. Chim. Acta, 1978, 100, 145 CrossRef CAS.
  29. R. Belcher, S. L. Bogdanski, E. Henden and A. Townshend, Analyst, 1975, 100, 522 RSC.
  30. C. Boampong, I. D. Brindle, X.-C. Le, L. Pidwerbesky and C. M. Ceccarelli Ponzoni, Anal. Chem., 1988, 60, 1185 CrossRef CAS.
  31. H. Chen, I. D. Brindle and X.-C. Le, Anal. Chem., 1992, 64, 667 CrossRef CAS.
  32. X.-C. Le, W. R. Cullen and K. J. Reimer, Anal. Chim. Acta, 1994, 285, 277 CrossRef CAS.
  33. A. G. Howard and C. Salou, Anal. Chim. Acta, 1996, 333, 89 CrossRef CAS.
  34. I. D. Brindle and X.-C. Le, Anal. Chim. Acta, 1990, 229, 239 CrossRef CAS.
  35. D. L. Tsalev, A. D'Ulivo, L. Lampugnani, M. Di Marco and R. Zamboni, J. Anal. At. Spectrom., 1996, 11, 989 RSC.
  36. O. F. X. Donard, S. Rapsomanikis and J. H. Weber, Anal. Chim., 1986, 58, 772 Search PubMed.
  37. L. Randall, O. F. X. Donard and J. H. Weber, Anal. Chim. Acta, 1986, 184, 197 CrossRef CAS.
  38. F. M. Martin and O. F. X. Donard, J. Anal. At. Spectrom., 1994, 9, 1143 RSC.
  39. S. D. W. Comber, PhD Thesis, University of Southampton, 1990.
  40. D. M. Dickson, R. G. Wyn Jones and J. Davenport, Planta, 1980, 150, 158 CrossRef CAS.
  41. M. O. Andreae, Mar. Chem., 1990, 30, 1 CrossRef CAS.
  42. A. G. Howard and D. W. Russell, Anal. Chem., 1995, 67, 1293 CrossRef CAS.
  43. G. R. Ricci, L. S. Shepard, G. Colovos and N. E. Hester, Anal. Chem., 1981, 53, 610 CAS.
  44. R. H. Atallah and D. A. Kalman, Talanta, 1991, 38, 167 CrossRef CAS.
  45. L. Ebdon, S. J. Hill and P. Jones, Talanta, 1991, 38, 607 CrossRef CAS.
  46. R. Rubio, A. Padro, J. Alberti and G. Rauret, Anal. Chim. Acta, 1993, 283, 160 CrossRef CAS.
  47. R. Rubio, J. Alberti and G. Rauret, Int. J. Environ. Anal. Chem., 1993, 52, 203 CAS.
  48. J. Alberti, R. Rubio and G. Rauret, Fresenius' J. Anal. Chem., 1995, 351, 415 CrossRef CAS.
  49. R. Rubio, J. Alberti, A. Padro and G. Rauret, Trends Anal. Chem., 1995, 14, 6 CrossRef.
  50. L. Pitts, A. Fisher, P. Worsfold and S. J. Hill, J. Anal. At. Spectrom., 1995, 10, 519 RSC.
  51. M. A. Lopez, M. M. Gomez, M. A. Palacios and C. Camara, Fresenius' J. Anal. Chem., 1993, 346, 643 CrossRef CAS.
  52. M. A. López Gonzálvez, M. N. Gómez, C. Camara and M. A. Palacios, J. Anal. At. Spectrom., 1994, 9, 291 RSC.
  53. I. Martin, M. A. Lopez Gonzalvez, M. Gomez, C. Camara and M. A. Palacios, J. Chromatogr. B, 1995, 666, 101 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.