Correction of Matrix Effects in Quantitative Elemental Analysis With Laser Ablation Optical Emission Spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

C. CHALÉARD, P. MAUCHIEN, N. ANDRE, J. UEBBING, J. L. LACOUR and C. GEERTSEN


Abstract

A new approach to the quantification of the optical emission signals from a laser produced plasma in air at atmospheric pressure is described. It is based on a simple analytical model giving intensity of the emission lines as a function of the vaporized mass and the plasma excitation temperature. Under the hypothesis of a stoichiometric ablation process, these two parameters are presumed to be responsible for the matrix effects observed when the composition of the sample is changed. Under the experimental conditions chosen it is demonstrated that the acoustic signal emitted by the plasma is proportional to the vaporized mass and that the excitation plasma temperature can be controlled using the line ratio of a given element chosen as a ‘temperature sensor’. Normalization of the emission signals by these two parameters allows for an efficient correction of the matrix effects. Results obtained on a series of aluminium alloys, steel and brass samples demonstrate, for the first time, the possibility of matrix independent analysis with LA-OES with an accuracy of a few percent.


References

  1. F. Brech and L. Cross, Appl. Spectrosc., 1962, 16, 59.
  2. L. Moenke-Blankenburg, Spectrochim. Acta Rev., 1993, 15, 1 Search PubMed.
  3. C. Carlhoff, C. J. Lorenzen, K. P. Nick and H. J. Siebeneck, in In-Process Optical Measurements, ed. Spring, K. H., Proc. SPIE, SPIE Publications, Bellingham, 1989 Search PubMed.
  4. C. J. Lorenzen, C. Carlhoff, U. Hahn and M. Jogwich, J. Anal. At. Spectrom., 1992, 7, 1029 RSC.
  5. N. Andre, C. Geertsen, J. L. Lacour, P. Mauchien and S. Sjöström, Spectrochim. Acta, Part B, 1994, 49, 12 and 1363.
  6. M. Sabsabi, P. Cielo, S. Boily and M. Chaker, Proc. SPIE-Int. Soc. Opt. Eng., 1993, 199, 2069 Search PubMed.
  7. J. F. Ready, Effects of High Power Laser Radiation, Academic Press, New York, 1971 Search PubMed.
  8. M. Von Allmen, Laser Beam Interactions With Materials, Springer Series in Material Science, Springer, Berlin, 1987 Search PubMed.
  9. L. J. Radziemski and D. A. Cremers, Laser-induced Plasmas and Applications, Marcel Dekker, New York, 1989 Search PubMed.
  10. C. Geertsen, J. L. Lacour, P. Mauchien and L. Pierrard, Spectrochim. Acta Part B, 1996, 51, 1403 CrossRef.
  11. K. Kagawa, K. Kawai, M. Tani and T. Kobayashi, Appl. Spectrosc., 1994, 48, 198 CAS.
  12. J. A. Aguilera, C. Aragon and J. Campos, Appl. Spectrosc., 1992, 46, 1382 CAS.
  13. W. T. Chan and R. E. Russo, Spectrochim. Acta, Part B, 1991, 46, 1471 CrossRef.
  14. R. Wisbrun, I. Schechter, R. Niessner, H. Schröder and K. L. Kompa, Anal. Chem., 1994, 66, 2964 CrossRef CAS.
  15. R. Wisbrun, R. Niessner and H. Schröder, Anal. Meas. Instrum., 1993, 1, 17 Search PubMed.
  16. J. B. Ko, W. Sdorra and K. Niemax, Fresenius' Z. Anal. Chem, 1989, 335, 648 CAS.
  17. A. Ciocan, L. Hiddemann, J. Uebbing and K. Niemax, J. Anal. At. Spectrom., 1993, 8, 273 RSC.
  18. C. Geertsen, J. L. Lacour and P. Mauchien, paper presented at the E-MRS 1995 Spring Meeting, Symposium F, COLA '95, Strasbourg, France, May 22–26, 1995.
  19. M. Autin, A. Briand, P. Mauchien and J. M. Mermet, Spectrochim. Acta, Part B, 1993, 48, 851 CrossRef.
  20. R. E. Russo, Appl. Spectrosc, 1995, 49, 14A CAS.
  21. G. Chen and E. S. Yeung, Anal. Chem, 1988, 60, 2258 CrossRef CAS.
  22. H. Pang, D. R. Wiederin, R. S. Houk and E. S. Yeung, Anal. Chem., 1991, 63, 390 CrossRef CAS.
  23. M. A. Shannon and R. E. Russo, paper presented at the E-MRS 1995 Spring Meeting, Symposium F, COLA '95, Strasbourg, France, May 22–26, 1995.
  24. A. Vertes, R. W. Dreyfus and D. E. Platt, in IBM Research Report, RC 18520, 1992 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.