Time-resolved resonance Raman spectroscopic studies on the triplet excited state of fluoranil

(Note: The full text of this document is currently only available in the PDF Version )

Gurusamy Balakrishnan and and Siva Umapathy


Abstract

Perfluoro substituted organic compounds have attracted attention owing to their unique structure and reactivity induced by the perfluoro effect. Fluoranil, a perfluoro derivative of p-benzoquinone, is the subject of this paper. Although the perfluoro effect in the ground state seems to have been well understood there is no information available about such effects on the excited state. Here, the time-resolved resonance Raman spectra of the triplet excited state of fluoranil are reported along with the Raman excitation profiles (REPs) of the various vibrational modes. The vibrational spectral analyses have been carried out by analogy with the fluoranil ground state, triplet benzoquinone, and triplet chloranil vibrational spectral assignments. Also, the assignments are further supported by the calculated frequencies using abinitio theoretical methods. It is observed that for fluoranil in the triplet excited state, due to the perfluoro effect, the structure is considerably less distorted than benzoquinone and also the electron delocalization in the π* antibonding orbital is less than that of triplet excited state of benzoquinone.


References

  1. S. E. Boesch and R. A. Wheeler, J. Phys. Chem., 1995, 99, 8125 CrossRef CAS.
  2. L. C. T. Shuote and J. P. Mittal, J. Phys. Chem., 1994, 98, 11094 CrossRef.
  3. P. Darmanyan and C. S. Foote, J. Phys. Chem., 1992, 96, 3723; 6317.
  4. G. N. R. Tripathi and R. H. Schuler, J. Phys. Chem., 1983, 87, 3101 CrossRef CAS.
  5. H. Schei, K. Hagen and M. Traetteberg, J. Mol. Struct., 1980, 62, 121 CrossRef CAS.
  6. P. A. Meresse and N. B. Chanh, Acta Crystallogr., Sect. B, 1974, 30, 524 CrossRef.
  7. A. Girlando and C. Pecile, J. Chem. Soc., Faraday Trans. 2, 1975, 71, 689 RSC.
  8. N. A. Shcheglova, D. N. Shigorin, G. G. Yakobson and L. Sh. Tsuhishvili, Russ. J. Phys. Chem., 1969, 43, 1112 Search PubMed.
  9. C. R. Brundel, M. B. Robin and N. A. Kuebler, J. Am. Chem. Soc., 1972, 94, 1466 CrossRef.
  10. S. Chowdhury, E. P. Grimsrud, T. Heinis and P. Kebarle, J. Am. Chem. Soc., 1986, 108, 3635 CrossRef CAS.
  11. C. D. Cooper, W. F. Frey and R. N. Compton, J. Chem. Phys., 1978, 69, 2367 CrossRef CAS.
  12. G. Grampp and K. Neubauer, J. Chem. Soc., Perkin Trans. 2, 1993, 2015 RSC.
  13. M. Tanaka, Bull. Chem. Soc. Jpn., 1993, 66, 3171 CAS.
  14. E. T. Kang, K. G. Neoh and K. L. Tan, Mol. Phys., 1990, 70, 1057 CAS.
  15. E. A. Mourad, Spectrochim. Acta, Part A, 1987, 43, 11 CrossRef.
  16. L. J. Andrews and R. M. Keefer, J. Org. Chem., 1988, 53, 2163 CrossRef CAS.
  17. L. J. Andrews and R. M. Keefer, J. Org. Chem., 1988, 53, 537 CrossRef CAS.
  18. B. Dodson, R. Foster and A. A. S. Bright, J. Chem. Soc. B., 1971, 1283 RSC.
  19. A. A. S. Bright, J. A. Chudek and R. Foster, J. Chem. Soc., Perkin Trans. 2, 1975, 1256 RSC.
  20. A. W. Parker, R. E. Hester and S. Umapathy, J. Chem. Soc., Faraday Trans., 1992, 88, 2649 RSC.
  21. G. Balakrishnan, P. Mohandas and S. Umapathy, J. Phys. Chem., 1996, 100, 16427 CrossRef.
  22. G. N. R. Tripathi, in Time Resolved Spectroscopy, ed. R. J. H. Clark and R. E. Hester, John Wiley and Sons, New York, 1989, vol 18, ch. 4 Search PubMed.
  23. S. M. Beck and L. E. Brus, J. Am. Chem. Soc., 1982, 104, 4789 CrossRef CAS.
  24. R. Rosetti, S. M. Beck and L. E. Brus, J. Phys. Chem., 1983, 87, 3058 CrossRef.
  25. G. N. R. Tripathi and R. H. Schuler, J. Chem. Phys., 1982, 76, 2139 CrossRef CAS.
  26. T. Tahara and H. Hamaguchi, J. Phys. Chem., 1992, 96, 8252 CrossRef CAS.
  27. The calculated vibrational frequencies are provided by one of reviewers. The vibrational frequencies are calculated using HF/6-31G* method. For a better comparison with experiment, the calculated frequencies are multiplied by an empirical factor of 0.9. This scaling factor accounts for systematic errors caused by basis set incompleteness, neglect of electron correlation and vibrational anharmonicity.
  28. The rate constant for quenching of the FA triplet excited state by molecular oxygen is calculated using the following equation,3kTq(O2)=[kTobskTO]/[O2]. The concentration of O2 in airsaturated CCl4([O2]= 2.59 × 10–3M) and the decay rate of FA triplet excited state in the absence of oxygen (kTO= 0.38 × 106 s–1) are taken from ref. 3.
  29. A. B. Myers and R. A. Mathies, in Biological Applications of Raman Spectroscopy, ed. T. G. Spiro, Wiley, New York, 1987, vol. 2, p. 1 Search PubMed.
  30. N. Biswas, S. Umapathy, C. Kalyanaraman and N. Sathyamurthy, Proc. Ind. Acad. Sci.(Chem. Sci.), 1995, 107, 233 Search PubMed.
  31. A. C. Albrecht, J. Chem. Phys., 1961, 34, 1476 CrossRef CAS.
  32. The overlapping solvent band at 1534 cm–1(with the lower frequency side of the complex band at 1647 cm–1) might cause some error in the intensity and frequency of the deconvoluted band at 1590 cm–1. However, such an error is unlikely to influence our discussion, which is qualitative in nature.
Click here to see how this site uses Cookies. View our privacy policy here.