Yield stress and contact forces in coagulated oxide dispersions Role of electrostatic interactions

(Note: The full text of this document is currently only available in the PDF Version )

Richard Buscall, Rammile Ettelaie and Thomas W. Healy


Abstract

The adsorption of low molecular weight oxyanions onto oxide surfaces is known to limit the distance of the closest approach between particles in dispersions of such oxides. As a consequence, the value of van der Waals interactions at the point of contact remains finite. By calculating the forces for conditions where the charge density of the absorbed ions is small, it has been demonstrated that the electrostatic repulsion, for pH values sufficiently far from the isoelectric point (i.e.p.), can become large enough to overcome the attraction, even at distances of closest approach. More significantly, this conclusion remains true at high electrolyte concentrations. It has also been shown that the current results can account for the apparent narrowness of the experimental shear stress vs. pH curves, recently reported in a number of studies for oxide dispersions. It has been predicted that, regardless of the electrolyte concentration, coagulation for such systems can only occur over a limited range of pH values around the i.e.p. The significance of these results for the problem of peptisation, in dispersions with high acid contents, has also been briefly discussed.


References

  1. Y. K. Leong, P. J. Scales, T. W. Healy, D. V. Boger and R. Buscall, J. Chem. Soc., Chem. Commun., 1993, 639 RSC.
  2. Y. K. Leong, P. J. Scales, T. W. Healy, D. V. Boger and R. Buscall, J. Chem. Soc., Faraday Trans., 1993, 89, 2473 RSC.
  3. Y. K. Leong, P. V. Liddell, T. W. Healy and D. V. Boger, Proceedings of the XIth International Congress on Rheology, Theoretical and Applied Rheology, ed. P. Moldenaers and R. Keunings, Elsevier, Brussels, Belgium, 1992, p. 619 Search PubMed.
  4. Y. K. Leong, P. J. Scales, T. W. Healy and D. V. Boger, J. Am. Ceram. Soc., 1995, 78, 2209 CAS.
  5. S. Biggs and T. W. Healy, J. Chem. Soc., Faraday Trans., 1994, 90, 3415 RSC.
  6. Y. K. Leong, P. J. Scales, T. W. Healy and D. V. Boger, Colloids Surf. A, 1995, 95, 43 CrossRef CAS.
  7. S. Biggs, P. J. Scales, Y. K. Leong and T. W. Healy, J. Chem. Soc., Faraday Trans., 1995, 91, 2921 RSC.
  8. B. A. Firth and R. J. Hunter, J. Colloid Interface Sci., 1976, 57, 266 CrossRef CAS.
  9. T. G. M. van de Ven and R. J. Hunter, Rheol. Acta, 1977, 16, 534.
  10. R. Ettelaie and R. Buscall, Adv. Colloid Interface Sci., 1995, 61, 131 CrossRef CAS.
  11. D. Chan, J. W. Perram, L. R. White and T. W. Healy, J. Chem. Soc., Faraday Trans. 1, 1975, 71, 1046 RSC.
  12. D. Chan, L. R. White and T. W. Healy, J. Chem. Soc., Faraday Trans. 1, 1976, 72, 2845 Search PubMed.
  13. O. Stern, Z. Elektrochem., 1924, 30, 508 Search PubMed.
  14. D. C. Grahame, Chem. Rev., 1947, 41, 441 CrossRef CAS.
  15. R. Buscall, Colloids Surf. A, 1993, 75, 269 CrossRef CAS.
  16. S. B. Johnson, P. J. Scales and T. W. Healy, Colloids Surf. A, in press Search PubMed.
  17. S. L. Carnie and G. M. Torrie, Adv. Chem. Phys., 1984, 56, 141 CAS.
  18. W. B. Russell, D. A. Saville and W. R. Schowalter, Colloids Dispersions, Cambridge University Press, Cambridge, 1989 Search PubMed.
  19. R. J. Hunter, Foundation of Colloid Science, Oxford University Press, Oxford, 1987, vol. 1 Search PubMed.
  20. R. Hogg, T. W. Healy and D. W. Fuerstenau, Trans. Faraday Soc., 1966, 62, 1638 RSC.
  21. B. V. Deryaguin, Kolloid Z., 1934, 69, 155 Search PubMed.
  22. D. Y. C. Chan and D. J. Mitchell, J. Colloid Interface Sci., 1983, 95, 193 CrossRef CAS.
  23. D. Y. C. Chan, ACS Symp. Ser., 1986, 323, 99 CAS.
  24. G. Frens and Th. G. Overbeek, J. Colloid Interface Sci., 1972, 38, 376 CrossRef CAS.
  25. S. Levine and A. Suddaby, Proc. Phys. Soc., London, Sect. A, 1951, 64, 287 Search PubMed.
  26. E. P. Honig and P. M. Mul, J. Colloid Interface Sci., 1971, 36, 258 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.