Hydrogen cyanide synthesis on polycrystalline platinum and 90:10 platinum[ndash ]rhodium surfaces

(Note: The full text of this document is currently only available in the PDF Version )

A. Bockholt, I.S. Harding and R.M. Nix


Abstract

The synthesis of HCN from methane-based feedstocks has been studied at relatively low temperatures (up to 780°C) and pressures (0.02–0.15 Torr) over both pure Pt and Pt–10%Rh alloy model catalysts. Steady-state synthesis of HCN is observed over Pt from CH4–NH3–O2 feed mixtures with a maximum in activity observed using a 1:1:0.5 mixing ratio. The activity of the Pt–10%Rh alloy under comparable conditions is significantly lower, indicating that Rh has an inhibiting effect on the synthesis reaction at these temperatures and pressures. Comparable steady-state levels of activity were not observed over Pt for pure CH4–NH3, CH4–NH3–CO2 or CH4–NO feed mixtures; in particular, for CH4–NH3 feeds in the absence of oxygen a high initial activity was seen to decay rapidly over time. The effects of various surface pretreatments of the Pt were found to be transitory, with a gradual return of the HCN activity to its normal level in CH4–NH3–O2 (1:1:0.5) mixtures in all cases, and the most beneficial pretreatment effect was observed for a simple physical surface roughening induced by mild ion bombardment. By contrast, pre-exposure of the catalyst surface to ethylene or ammonia at elevated temperatures led to an initial inhibition or decrease in the synthesis activity.


References

  1. C. N. Satterfield, Heterogeneous Catalysis in Practice, McGraw-Hill, New York, 2nd edn., 1991 Search PubMed.
  2. B. Y. K. Pan and R. G. Roth, Ind. Eng. Chem. Process Res. Dev., 1968, 7, 53 Search PubMed.
  3. B. Y. K. Pan, J. Catal., 1971, 21, 27 CrossRef CAS.
  4. L. D. Schmidt and D. Luss, J. Catal., 1971, 22, 269 CrossRef CAS.
  5. D. R. Anderson, J. Catal., 1988, 113, 475 CrossRef CAS.
  6. B. A. Cowans, K. A. Jurman, W. N. Delgass, Y. Z. Li, R. Reifenberger and T. A. Koch, J. Catal., 1990, 125, 501 CrossRef CAS.
  7. C. L. Levoguer and R. M. Nix, J. Chem. Soc., Faraday Trans., 1996, 92, 4799 RSC and references therein.
  8. D. Hasenberg and L. D. Schmidt, J. Catal., 1985, 91, 116 CrossRef CAS.
  9. D. Hasenberg and L. D. Schmidt, J. Catal., 1986, 97, 156 CrossRef CAS.
  10. D. Hasenberg and L. D. Schmidt, J. Catal., 1987, 104, 441 CrossRef CAS.
  11. N. Waletzko and L. D. Schmidt, AIChE J., 1988, 34, 1146 CrossRef CAS.
  12. V. K.-K. Wang, US Pat. 4,107278 (Aug. 15, 1978) Search PubMed.
  13. D. G. Löffler and L. D. Schmidt, Surf. Sci., 1976, 59, 195 CrossRef.
  14. Practical Surface Analysis, ed. D. Briggs and M. P. Seah, 1990Wiley, 1990, vol. 1 Search PubMed.
  15. A. N. Salanov and V. I. Savchenko, Surf. Sci., 1993, 296, 393 CrossRef CAS.
  16. K. A. Peterlinz and S. J. Sibener, J. Phys. Chem., 1995, 99, 2817 CrossRef CAS.
  17. S. Meyer and R. M. Nix, unpublished results.
  18. T. Pignet and L. D. Schmidt, Chem. Eng. Sci., 1974, 29, 1123 CrossRef CAS; J. Catal., 1975, 40, 212 Search PubMed.
  19. C. W. Nutt and S. Kapur, Nature (London), 1968, 220, 697 CAS; 1969, 224, 169.
  20. J. M. Bradley, A. Hopkinson and D. A. King, J. Phys. Chem., 1995, 99, 17032 CrossRef CAS.
  21. E. J. Kelly, W. R. Patterson and J. J. Rooney, J. Mol. Catal., 1994, 89, 19 CrossRef CAS.
  22. D. F. Johnson and W. H. Weinberg, J. Chem. Phys., 1994, 101, 6289 CrossRef CAS.
  23. S. S. Bharadwaj and L. D. Schmidt, Ind. Eng. Chem. Res., 1996, 35, 1524 CrossRef CAS.
  24. A. D. van Langeveld and J. W. Niemantsverdriet, Surf. Sci., 1986, 178, 880 CrossRef CAS.
  25. N. Savargaonkar, B. C. Khanra, M. Pruski and T. S. King, J. Catal., 1996, 162, 277 CrossRef CAS.
  26. J. Pielaszek, Plat. Metals Rev., 1984, 28(3), 109 Search PubMed.
  27. D. A. Hickman, M. Huff and L. D. Schmidt, Ind. Eng. Chem. Res., 1993, 32, 809 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.