Molecular self-assembly composed of aromatic hydrogen-bond donor[ndash ]acceptor complexes

(Note: The full text of this document is currently only available in the PDF Version )

Tetsuo Koyama and Akihiro Wakisaka


Abstract

Molecular self-assembling systems derived from the clustering of acid and base molecules have been investigated by mass spectrometric analysis of clusters isolated from liquid droplets. N–H···N and O–H···N hydrogen-bonded acid–base systems were compared. When heteroaromatic N–H···N hydrogen-bonding acid–base systems, such as 7-azaindole dimer, the indole–quinoline pair, etc. were used as acid–base pairs, the clusters composed of equimolar acid and base molecules were generated. This means that the hydrogen-bonding acid–base complex, N–H···N, behaves like a single molecule in cluster formation. On the other hand, clustering of the aromatic O–H···N hydrogen-bonding systems, such as phenol–pyridine, phenol–pyrazine, etc., was controlled by the acid–base interaction determined by the pKa values, giving a multilayer structure for a relatively strong acid–base pair and a monolayer structure for a relatively weak acid–base pair. Molecular self-assembling systems containing hydrogen-bond donor and acceptor molecules have been systematically described here.


References

  1. R. S. Lokey and R. L. Iverson, Nature (London), 1995, 375, 303 CrossRef CAS.
  2. G. M. Whitesides, J. P. Mathias and C. T. Seto, Science, 1991, 254, 1312 CrossRef CAS.
  3. S. R. LaBrenz and J. W. Kelly, J. Am. Chem. Soc., 1995, 117, 1655 CrossRef CAS.
  4. D. B. Amabilano, P. R. Ashton, C. L. Brown, E. Córdova, L. A. Godinez, T. T. Goodnow, A. E. Kaifer, S. P. Newton, M. Pietraszkiewicz, D. Philip, F. M. Raymo, A. S. Reder, M. T. Rutland, A. M. Z. Slawin, N. Spencer, J. F. Stoddart and D. J. Williams, J. Am. Chem. Soc., 1995, 117, 1271 CrossRef CAS.
  5. P. R. Ashton, D. Philp, N. Spencer and J. F. Stoddart, J. Chem. Soc. Chem. Commun., 1991, 1677 RSC.
  6. P. K. Dutta, M. Jakupca, K. S. N. Reddy and L. Salvati, Nature (London), 1995, 374, 44 CrossRef CAS.
  7. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature (London), 1992, 359, 710 CrossRef CAS.
  8. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B. F. Chmelka, Science, 1993, 261, 1299 CrossRef CAS.
  9. A. Wakisaka, Y. Yamamoto, Y. Akiyama, H. Takeo, F. Mizukami and K. Sakaguchi, J. Chem. Soc., Faraday Trans., 1996, 92, 3339 RSC.
  10. A. Wakisaka, Y. Akiyama, Y. Yamamoto, T. Engst, H. Takeo, F. Mizukami, K. Sakaguchi and H. Jones, J. Chem. Soc., Faraday Trans., 1996, 92, 3539 RSC.
  11. N. Nishi and K. Yamamoto, J. Am. Chem. Soc., 1987, 109, 7353 CrossRef CAS.
  12. N. Nishi, Z. Phys. D, 1990, 15, 139.
  13. T. Arai, T. Koyama and A. Wakisaka, Chem. Lett., 1997, 123 CrossRef CAS.
  14. Y. Yamamoto and A. Wakisaka, J. Chem. Soc., Faraday Trans., 1997, 93, 1405 RSC.
  15. Y. Yamamoto, Y. Sato and A. Wakisaka, J. Chem. Soc., Chem. Commun., 1994, 2727 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.