Photocatalytic transformations of chlorinated methanes in the presence of electron and hole scavengers

(Note: The full text of this document is currently only available in the PDF Version )

Paola Calza, Claudio Minero and and Ezio Pelizzetti


Abstract

The photocatalytic degradation in the aqueous phase of CCl4, CHCl3 and CH2Cl2 over irradiated TiO2 has been investigated in the presence of electron and hole scavengers, including atmospheric oxygen. Chloromethanes degrade through combined reductive and oxidative processes, the importance of which varies on going from CCl4, to CHCl3 and CH2Cl2.

Under aerated conditions at pH 5, almost complete conversion into CO2 and HCl has been observed. Although chloride ions were evolved stoichiometrically, at pH 11 persistent formation of formaldehyde and formic acid was observed. Stable intermediates, either chlorinated or dechlorinated (formic acid, formaldehyde and methanol) have been quantified. An initial reductive dominance was observed for CCl4 even in the presence of oxygen. CH2Cl2 degradation was largely oxidative, even from the early stages of degradation, whereas the roles of the oxidative and reductive pathways were comparable for CHCl3.

The effect of hole and electron scavengers highlights the importance of reductive and oxidative pathways. Reductants suchas alcohols (methanol, propan-2-ol, tert-butanol) enhance CCl4 degradation remarkably, have a limited effect on CHCl3 andstrongly decrease the degradation rate of CH2Cl2. Electron scavengers like periodate and peroxydisulfate decrease the degradation rate of CCl4 and have limited effects on CHCl3. Halides (chloride and bromide) show a peculiar behaviour. Acting as hole scavengers, they produce active species (ClNsbd and BrNsbd) that participate in reactions with transient intermediates. During degradation of CHCl3 in the presence of chloride, formation of CCl4 was reported. Interestingly, for CCl4 the degradation rate decreases and in the presence of bromide CBrCl3 is detected at trace level.


References

  1. D. F. Ollis, E. Pelizzetti and N. Serpone, Environ. Sci. Technol., 1991, 25, 1522.
  2. D. W. Bahnemann, J. Cunningham, M. A. Fox, E. Pelizzetti, P. Pichat and N. Serpone, in Aquatic and Surface Chemistry, ed. G. R. Helz, R. G. Zepp and D. G. Crosby, Lewis, Boca Raton, FL, 1994, p. 261 Search PubMed.
  3. M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 1995, 95, 69 CrossRef CAS.
  4. A. L. Pruden and D. F. Ollis, Environ. Sci. Technol., 1983, 17, 628 CAS.
  5. C. Y. Hsiao, C. L. Lee and D. F. Ollis, J. Catal., 1983, 82, 418 CrossRef CAS.
  6. D. W. Bahnemann, C. H. Fisher, M. R. Hoffmann, A. P. Hong, J. Moning and C. Kormann, Am. Chem. Soc. Environ. Div., 1987, 27, 528 Search PubMed.
  7. T. Hisanaga, K. Harada and K. Tanaka, J. Photochem. Photobiol. A, 1990, 54, 113 CrossRef CAS.
  8. C. Kormann, D. W. Bahnemann and M. R. Hoffmann, Environ. Sci. Technol., 1991, 25, 494 CAS.
  9. F. Sabin, T. Turk and A. Vogler, J. Photochem. Photobiol. A, 1992, 63, 99 CrossRef CAS.
  10. M. Hilgendorff, M. Hilgendorff and D. W. Bahnemann, J. Adv. Oxid. Technol., 1996, 1, 35 Search PubMed.
  11. W. Choi and M. R. Hoffmann, Environ. Sci. Technol., 1995, 29, 1646 CAS.
  12. W. Choi and M. R. Hoffmann, J. Phys. Chem., 1996, 100, 2161 CrossRef CAS.
  13. W. Choi and M. R. Hoffmann, Environ. Sci. Technol., 1997, 31, 89 CrossRef CAS.
  14. D. W. Bahnemann, Y. Moenig and R. Chapman, J. Phys. Chem., 1987, 91, 3782 CrossRef.
  15. D. Mass, P. Pichat and C. Guillard, Res. Chem. Intermed., 1997, 23, 275.
  16. R. J. Kuhler, G. A. Sauto, T. R. Caudill, E. A. Betterton and R. G. Arnold, Environ. Sci. Technol., 1993, 27, 2104 CAS.
  17. P. Calza, C. Minero and E. Pelizzetti, Environ. Sci. Technol., 1997, 31, 2198 CrossRef CAS.
  18. E. Pelizzetti, C. Minero, V. Maurino, A. Sclafani, H. Hidaka and N. Serpone, Environ. Sci. Technol., 1989, 23, 1380 CAS.
  19. C. Minero, E. Pelizzetti, S. Malato and J. Blanco, Chemosphere, 1993, 26, 2103 CrossRef CAS.
  20. P. Piccinini, P. Calza, C. Minero and E. Pelizzetti, New J. Chem., 1996, 20, 1159 Search PubMed.
  21. C. Minero, P. Calza, E. Pelizzetti and N. Serpone, manuscript in preparation.
  22. X. Shen, Y. Lind, T. E. Eriksen and G. Merenyi, J. Phys. Chem., 1989, 93, 553 CrossRef CAS.
  23. T. M. Vogel, C. S. Criddle and P. L. McCarthy, Environ. Sci. Technol., 1987, 21, 722 CAS.
  24. H. Sakai, R. Baba, K. Hashimoto, A. Fujishima and A. Heller, J. Phys. Chem., 1995, 99, 11896 CrossRef CAS.
  25. L. Amalric, C. Guillard and P. Pichat, Res. Chem. Intermed., 1994, 20, 579 CAS.
  26. The average oxidation number nC refers to a weighted average of carbon oxidation states over all compounds present in the system. It is calculated through the formula nC=(Σci(nC)i]/(Σci), where ci is the concentration of the species in which carbon has the oxidation state (nC)i Since mineralisation is demonstrated, the difference between the value calculated from detectable species in solution and the stoichiometric value is assumed to be due to CO2 formation.
  27. U. Strafford, K. A. Gray, P. V. Kamat and A. Varma, Chem. Phys. Lett., 1993, 205, 55 CrossRef.
  28. L. A. Dibble and G. B. Raupp, Environ. Sci. Technol., 1992, 26, 492 CAS.
  29. J. Schwitzgebel, J. G. Ekerdt, H. Gerisher and A. Heller, J. Phys. Chem., 1995, 99, 5633 CrossRef CAS.
  30. G. Lu, A. Linsebigler and J. T. Yates Jr, J. Phys. Chem., 1995, 99, 7626 CrossRef CAS.
  31. J. L. Roberts Jr. and D. T. Sawyer, J. Am. Chem. Soc., 1981, 103, 712 CrossRef CAS.
  32. K. D. Asmus, D. W. Bahnemann, K. Krisher, K. Lal and J. Honig, Life Chem. Rep., 1985, 3, 1 Search PubMed.
  33. N. Getoff, Water Res., 1986, 20, 1261 CrossRef CAS.
  34. N. Getoff, Radiat. Phys. Chem., 1991, 37, 673 CrossRef CAS.
  35. P. Neta, R. E. Huie and A. B. Ross, J. Phys. Chem. Ref. Data, 1990, 19, 413 CAS.
  36. J. Monig, D. W. Bahnemann and K. D. Asmus, Chem. Biol. Interact., 1983, 45, 15 CrossRef CAS.
  37. A. B. Ross and P. Neta, Rate Constants for Reactions of Aliphatic Carbon-Centered Radicals in Aqueous Solutions, NSRDS-NBS 70, Nat. Bureau of Standards, Washington, DC, 1982 Search PubMed.
  38. V. J. Lilie, G. Beck and A. Henglein, Ber. Bunsen-Ges Phys. Chem., 1971, 75, 458 Search PubMed.
  39. O. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac and M. C. Thurnauer, J. Phys. Chem., 1993, 97, 13284 CrossRef CAS.
  40. B. Ohta and S. Nishimoto, J. Phys. Chem., 1993, 97, 920 CrossRef CAS.
  41. C. Minero, Sol. Energy Mater. Sol. Cells, 1995, 38, 421 CrossRef CAS.
  42. Y. Mao, C. Schöneich and K. D. Asmus, J. Phys. Chem., 1991, 95, 10 080 CrossRef CAS.
  43. R. Mertens, C. von Sonntag, J. Lind and G. Merenyi, Angew. Chem., Int. Ed. Engl., 1994, 33, 1259 CrossRef.
  44. D. J. Fitzmaurice, M. Eschle, H. Frei and J. Moser, J. Phys. Chem., 1993, 97, 3806 CrossRef CAS.
  45. E. Pelizzetti, C. Minero, M. Ristorto and M. Sega, manuscript in preparation.
  46. J. Augustynski, Struct. Bonding (Berlin), 1988, 69, 1 CAS.
  47. C. Minero, V. Maurino, P. Calza and E. Pelizzetti, New J. Chem., 1997, 21, 841 Search PubMed.
  48. S. T. Martin, A. T. Lee and M. R. Hoffmann, Environ. Sci. Technol., 1995, 29, 2567 CAS.
  49. E. Pelizzetti, V. Carlin, C. Minero and M. Grätzel, New J. Chem., 1991, 15, 351 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.