Dielectric properties of an NaX zeolite as a function of the hydration state

(Note: The full text of this document is currently only available in the PDF Version )

G. Chabanis, A. Abdoulaye, J. C. Giuntini, J. V. Zanchetta, F. Di Renzo and J. Vanderschueren


Abstract

The dielectric properties of the NaX zeolite (Si/Al=1.3) have been measured after different thermal treatments in the temperature range 100–400°C. The frequency domain was varied from 10 to 106 Hz, the measuring temperature being in the range 80–150°C. Independent of the outgassing temperature (i.e. the number of water molecules), the ac conductivity is ascribed to migration of the supercage cations. The variation in the migration energy (Edc) as a function of the adsorbed water molecules (0.9–0.58 eV) shows their influence on the conduction process. Two relaxation domains are observed: ‘low-frequency’ and ‘high frequency’ relaxations, which are due to local hops of cations located in sites II and III, respectively. These two relaxations are confirmed by thermally stimulated current measurements. The energies associated with these relaxations vary with the outgassing temperature.


References

  1. J. M. Thomas, in Zeolites: Facts, Figures, Future, ed. P. A. Jacobs and R. A. Van Santen, Elsevier, Amsterdam, 1989, p. 3 Search PubMed.
  2. G. A. Ozin, A. Kuperman and A. Stein, Angew. Chem., 1989, 101, 373 CAS.
  3. W. M. Meier, D. H. Olson and C. Baerlocker, in Atlas of Zeolite Structures Types, Elsevier, London, 1996, p. 104 Search PubMed.
  4. W. J. Mortier, Compilation of Extra-framework Sites in Zeolites, Butterworth, Guilford, 1982, p. 19 Search PubMed.
  5. A. Chapton, G. Ravalitera, M. Choquet, B. Vandorpe and L. Gengembre, Rev. Phys. Appl., 1975, 10, 153 Search PubMed.
  6. P. Tabourier, J. C. Carru and W. Wacrenier, J. Chim. Phys., 1990, 87, 43 Search PubMed.
  7. J. J. Van Dun and W. J. Mortier, J. Phys. Chem., 1988, 92, 6740 CrossRef CAS.
  8. J. J. Van Dun, K. Dhaeze, W. J. Mortier and D. E. W. Vaughan, J. Phys. Chem. Solids, 1989, 50, 469 CrossRef CAS.
  9. O. Vigil, J. Fundora, F. Leccabue and B. E. Watts, Phys. Status Solidi, 1994, 141, K37 Search PubMed.
  10. E. Krogh Andersen, I. G. Krogh Andersen, J. Metcalf Johansen, K. E. Simonsen and E. Skou, Solid State Ionics, 1988, 28–30, 249.
  11. K. E. Simonsen and E. Skou, in Solid State Protonic Conductors, ed. J. B. Goodenough, J. Jensen and M. Kleitz, Odense University Press, Odense, Denmark, 1983 Search PubMed.
  12. H. E. Rabinowitsch and W. C. Wood, Electrochemistry, 1933, 39, 562 Search PubMed.
  13. D. N. Stamires, J. Chem. Phys., 1962, 36, 3174 CrossRef CAS.
  14. I. R. Beattie and A. Dyer, J. Chem. Soc., Faraday Trans., 1957, 53, 61 Search PubMed.
  15. F. J. Jansen and R. A. Schoonheydt, J. Chem. Soc., Faraday Trans., 1973, 69, 1338 RSC.
  16. E. Krogh Andersen, I. G. Krogh Andersen, E. Skou and S. Yde-Andersen, Solid State Ionics, 1986, 18/19, 1170 CrossRef.
  17. N. Knudsen, E. Krogh Andersen, I. G. Krogh Andersen and E. Skou, Solid State Ionics, 1989, 35, 51 CrossRef.
  18. D. C. Freeman and D. Stamires, J. Chem. Phys., 1961, 35, 799 CrossRef.
  19. J. C. Giuntini, A. Jaboker and J. V. Zanchetta, Clay. Miner., 1985, 20, 347 Search PubMed.
  20. J. P. Ibar, Fundamentals of Thermally Stimulated Current, and Relaxation Map Analysis, ed. SLP Press, New York, 1993 Search PubMed.
  21. J. Vanderschueren and J. Gasiot, Thermally Stimulated Current, ed. P. Braunlich, Springer, Verlag, Berlin, 1979 Search PubMed.
  22. J. C. Giuntini, J. Vanderschueren, J. V. Zanchetta and F. Henn, Phys. Rev. B, 1994, 50, 12489 CrossRef CAS.
  23. G. Chabanis, V. Mouton, A. Abdoulaye, J. C. Giuntini and J. V. Zanchetta, Ionics, 1995, 1, 177 Search PubMed.
  24. A. K. Jonscher, Nature (London), 1977, 267, 673 CAS.
  25. A. K. Jonscher, Dielectric Relaxation in Solids, Chesla Dielectric, London, 1983 Search PubMed.
  26. F. Buet, J. C. Giuntini, F. Henn and J. V. Zanchetta, Philos. Mag. B, 1992, 66, 77 Search PubMed.
  27. F. Salam, J. C. Giuntini, S. S. Soulayman and J. V. Zanchetta, Appl. Phys. A, 1996, 63.
  28. D. H. Olson, Zeolites, 1995, 15, 439 CrossRef CAS.
  29. Y. I. Smolin, Y. F. Shepelev, I. K. Butikova and V. P. Pentranovskii, Kristallografiya., 1983, 28, 36 Search PubMed.
  30. G. N. D. Al-Ajdah, A. A. Al-Rished, B. Beagley, J. Dwyer, F. R. Fitch and T. K. Ibrahim, J. Inclusion Phenom., 1985, 3, 135 CrossRef CAS.
  31. G. Calestani, G. Bacca and G. D. Andreetti, Zeolites, 1987, 7, 54 CrossRef CAS.
  32. O. Glemser, Z. Anorg. Chem., 1944, 252, 305 Search PubMed.
  33. W. Marton, G. Ebert and F. H. Müller, Kolloid–Z.Z., Polym., 1971, 248, 986 Search PubMed.
  34. J. Kjaer and E. Skou, Solid State Ionics, 1990, 40/41, 121 CrossRef.
  35. N. Cvjeticanin, S. Mentus and N. Petranovic, J. Chem. Soc., Faraday Trans., 1991, 79, 779 Search PubMed.
  36. R. Schoonheydt and J. B. Utterhoeven, Clay Miner., 1969, 8, 71 Search PubMed.
  37. F. J. Fripiat, A. Jelli, G. Poncellet and J. André, J. Phys. Chem., 1965, 69, 185.
  38. R. Prost and J. Chaussidon, Clay Miner., 1969, 8, 143 Search PubMed.
  39. P. Pissis and D. Daoukaki-Diamanti, J. Chem. Solids, 1993, 54, 701 Search PubMed.
  40. R. Schoonheydt and W. De Wilde, J. Chem. Soc., Faraday Trans., 1974, 70, 2132 RSC.
  41. U. Lohse, H. Stach, H. Hollnagel and W. Schirmer, Monatsber. Deutsche Akad. Wissenschaften Berlin, 1970, 12, 819 Search PubMed.
  42. K. T. No, H. Chon, T. Ree and M. S. John, J. Phys. Chem., 1981, 85, 2065 CrossRef CAS.
  43. E. Dempsey, J. Phys. Chem., 1969, 73, 3660 CrossRef CAS.
  44. L. Broussard and D. P. Shoemaker, J. Am. Chem. Soc., 1960, 82, 1041 CrossRef CAS.
  45. R. A. Schoonheydt, J. Phys., 1980, 6-41, 261 Search PubMed.
  46. J. C. Carru, P. Tabourier and J. M. Wacrenier, J. Chim. Phys., 1991, 88, 307 Search PubMed.
  47. G. Jones, J. Chem. Soc., Faraday Trans., 1985, 71, 2085 Search PubMed.
  48. S. W. S. McKerva and M. M. Hughes, J. Phys. D, 1975, 8, 1520 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.