Dealumination of mordenite catalysts using a low concentration of steam

(Note: The full text of this document is currently only available in the PDF Version )

Graham J. Hutchings, Andy Burrows, Colin Rhodes, Christopher J. Kiely and Ronald McClung


Abstract

The dealumination of mordenite using mild steaming conditions (1.2 vol% steam in nitrogen at 440°C) has been studied in a Pt/Al2O3/mordenite catalyst containing 25% of the zeolite. These conditions are found to cause extensive dealumination of the mordenite, as determined using 27Al and 29Si MAS NMR spectroscopy, although there is no significant loss of crystallinity as determined by powder X-ray diffraction. It is found that a relatively short duration of steaming (i.e. 3 h) can lead to dealumination. Detailed STEM analysis using both high angle annular dark field imaging and EDX demonstrates that the steaming does not significantly affect the Pt dispersion. Model experiments using only the mordenite component of the catalyst were also carried out, and the dealuminated mordenites were used as catalysts for o-xylene isomerisation. Initial dealumination leads to an increase in activity, although prolonged steaming leads to a loss of catalyst activity. The increase in activity is almost exclusively due to the formation of the products of disproportionation reactions. The results are discussed in terms of the effect of dealumination on the Brønsted and Lewis acid sites.


References

  1. R. M. Barrer and M. B. Makki, Can. J. Chem., 1964, 42, 1481 CAS.
  2. C. V. McDaniel and P. K. Maher, US Pat. 3 293 191, 1966.
  3. C. V. McDaniel and P. K. Maher, US Pat. 3 449 070, 1969.
  4. P. K. Maher, F. D. Hunter and J. Scherzer, Adv. Chem. Ser., 1971, 101, 266 Search PubMed.
  5. G. T. Kerr, J. Catal., 1969, 15, 200 CrossRef CAS.
  6. U. Lohse, H. Slack, H. Thamm, H. Sehirmir, W. Isikjan, A. A. Regent and N. I. Dubinin, Z. Orgn. Allg. Chem., 1980, 460, 179 Search PubMed.
  7. R. von Ballmoos, The 18O-exchange Method in Zeolite Chemistry, in Texte zur Chemie und Chemitechnik, Salle and Sauerländer, Frankfurt am Main, Germany, 1981, p. 185 Search PubMed.
  8. J. Dwyer, F. R. Fitch, F. Machado, G. Oin, S. M. Smyth and J. C. Vickerman, J. Chem. Soc., Chem. Commun., 1981, 422 RSC.
  9. B. H. Ha, J. Guidot and D. Barthomeuf, J. Chem. Soc., Faraday Trans. 1, 1979, 75, 1245; 2366 RSC.
  10. M. L. Martin de Armando, N. S. Gnep and M. Guisnet, J. Chem. Res.(S) 1981, 8, (M) 1981, 243 Search PubMed.
  11. B. L. Meyers, T. H. Fleisch, G. J. Ray, J. T. Miller and J. B. Hall, J. Catal., 1988, 110, 82 CrossRef CAS.
  12. M. A. Springuel-Huet and J. P. Fraissard, Zeolites, 1992, 12, 841 CrossRef CAS.
  13. M. H. W. Sonnemans, C. den Heijer and M. Crocker, J. Phys. Chem., 1993, 97, 440 CrossRef CAS.
  14. W. O. Haag and R. M. Lago, US Pat. 4 326 994, 1982.
  15. C. Mirodatos and D. Barthomeuf, J. Chem. Soc., Chem. Commun., 1981, 39 RSC.
  16. P. O. Fritz and J. H. Lunsford, J. Catal., 1989, 118, 85 CrossRef CAS.
  17. Y. Hong, V. Gruver and J. J. Fripiat, J. Catal., 1994, 150, 421 CrossRef CAS.
  18. Y. F. Chu and E. Ruckenstein, J. Catal., 1978, 55, 281 CrossRef CAS.
  19. G. I. Straguzzi, H. R. Aduriz and C. E. Gigola, J. Catal., 1980, 66, 171 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.