Formation process of end-linked networks by gel permeation chromatography

(Note: The full text of this document is currently only available in the PDF Version )

Kenji Urayama, Shinzo Kohjiya, Miwa Yamamoto, Yuko Ikeda and Akinori Kidera


Abstract

The size growth of clusters and the broadening of the size distribution during the formation process of end-linked network have been measured by gel permeation chromatography (GPC). The chromatograms obtained have been compared to the theoretical ones calculated on the basis of the Flory and Stockmayer model and Gaussian statistics. The experimental chromatograms at high degree of conversion (p) show a long tail in the low elution volume region which is not expected by the theory, while the experimental results at low p agree well with the theoretical prediction. Comparison of experimental chromatograms with theoretical ones suggests that the reactivity of functional sites in the cross-linker is not independent of p, and that the reaction to connect the branched clusters linearly occurs at high p prior to reaction for higher degrees of branching. The p-dependent reactivity is estimated to be due to the steric hindrance around functional groups in the cross-linker.


References

  1. See for a review, M. Adam and D. Lairez, in Physical Properties of Polymeric Gels, ed. A. Cohen, Wiley, New York, 1996 Search PubMed.
  2. P.-G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York, 1979 Search PubMed.
  3. D. Stauffer, A. Coniglio and M. Adam, Adv. Polym. Sci., 1981, 44, 103.
  4. P. J. Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New York, 1953 Search PubMed.
  5. W. Stockmayer, J. Chem. Phys., 1943, 11, 45 CrossRef CAS.
  6. W. Stockmayer, J. Chem. Phys., 1944, 12, 125 CrossRef CAS.
  7. D. Stauffer, Introduction to Percolation Theory, Taylor & Francis, London, 1985 Search PubMed.
  8. R. S. Whitney and W. Burchard, Makromol. Chem., 1980, 181, 869 CrossRef CAS.
  9. K. Kajiwara, W. Burchard, M. Kowalski, D. Nerger, K. Dusek, L. Matejka and Z. Tuzar, Makromol. Chem., 1984, 185, 2543 CrossRef CAS.
  10. M. Adam, M. Delsanti, R. Okasha and G. Hild, J. Phys. Lett. (Paris), 1987, 48, 1809 Search PubMed.
  11. D. Adolf, J. E. Martin and J. P. Wilcoxon, Macromolecules, 1990, 23, 527 CrossRef CAS.
  12. F. Schosseler, H. Benoit, Z. Grrubisic-Gallot, C. Strazielle and L. Leibler, Macromolecules, 1989, 22, 400 CrossRef CAS.
  13. E. V. Patton, J. A. Wesson, M. Rubinstein, J. C. Wilson and L. E. Oppenheimer, Macromolecules, 1989, 22, 1946 CrossRef CAS.
  14. A. Lapp, L. Leibler, F. Schosseler and C. Strazielle, Macromolecules, 1989, 22, 2871 CrossRef CAS.
  15. S. Kohjiya, Y. Takada, K. Urayama, Y. Tezuka and A. Kidera, Bull. Chem. Soc. Jpn., 1996, 69, 565 CAS.
  16. A. Kidera and S. Kohjiya, Comp. Polym. Sci., 1992, 2, 72 Search PubMed.
  17. M. Gottlieb, C. W. Macosko, G. S. Benjamin, K. O. Mayers and E. W. Merril, Macromolecules, 1981, 14, 1039 CrossRef CAS.
  18. J. P. Queslel and J. E. Mark, Adv. Polym. Sci., 1984, 65, 135 CAS.
  19. S. K. Patel, S. Malone, C. Cohen, J. R. Gillmore and R. H. Colby, Macromolecules, 1992, 25, 5241 CrossRef CAS.
  20. M. Shibayama, H. Takahashi and S. Nomura, Macromolecules, 1995, 28, 6860 CrossRef CAS.
  21. K. Urayama and S. Kohjiya, J. Chem. Phys., 1996, 104, 3352 CrossRef CAS.
  22. K. Urayama, T. Kawamura and S. Kohjiya, J. Chem. Phys., 1996, 105, 4833 CrossRef CAS.
  23. H. A. Kramers, J. Chem. Phys., 1946, 14, 415 CrossRef CAS.
  24. Z. Crubisic, P. Rempp and H. Benoit, J. Polym. Sci., Part B: Polym. Phys., 1967, 5, 753.
  25. C. W. Macosko and D. R. Miller, Macromolecules, 1976, 9, 199 CrossRef CAS.
  26. J. Bastide and S. J. Candau, in Physical Properties of Polymeric Gels, ed. A. Cohen, Wiley, New York, 1996 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.