Optimisation of carbon cluster geometry using a genetic algorithm

(Note: The full text of this document is currently only available in the PDF Version )

Steven Hobday and and Roger Smith


Abstract

A genetic algorithm (GA) based global optimisation procedure has been developed and used to find the most stable configurations of small carbon clusters. The GA attempts to locate the set of atomic nuclei coordinates associated with the global minimum of the potential-energy function using an analogy to Darwinian natural selection. This algorithm uses a novel encoding scheme to evolve a population of cluster geometries towards a low-energy final state. Two semi-empirical many-body potential-energy functions have been encoded for carbon interactions. The binding energies and structural forms of carbon clusters between C3 and C60 are reported. It has been shown that the algorithm can determine structures with a lower energy than those previously published using more classical local optimisation procedures. The GA can also be used to predict the global minimal energy configuration of pairwise interaction potentials.


References

  1. R. P. Hallet, K. G. McKay, S. P. Balm, A. W. Allaf, H. W. Kroto and A. J. Stace, Z. Phys. D, 1995, 34, 65.
  2. P. W. Fowler and D. E. Manolopoulos, An Atlas of Fullerenes, Clarendon Press, Oxford, 1995 Search PubMed.
  3. P. M. Pardalos, D. Shalloway and G. Xue, J. Global Optim., 1994, 4, 117 Search PubMed.
  4. J. Northby, J. Chem. Phys., 1987, 87, 6166 CrossRef CAS.
  5. J. Kostrowicki, L. Piela, B. J. Cherayil and H. A. Scheraga, J. Phys. Chem., 1991, 95, 4113 CrossRef CAS.
  6. J. More and W. Zhijun, Argonne Natl. Lab. Rep., 1996, MCS-P539-1095 Search PubMed.
  7. D. Deaven and K. Ho, Phys. Rev. Lett., 1995, 75, 288 CrossRef CAS.
  8. R. S. Judson, M. E. Colvin, J. C. Meza, A. Huffer and D. Gutierrez, Sandia Nat. Lab., 1991, SAND91-8740.
  9. M. Ali and R. Smith, Vacuum, 1993, 44, 377 CrossRef CAS.
  10. D. W. Brenner, Phys. Rev. B, 1990, 42, 9458 CrossRef CAS.
  11. D. W. Brenner, Phys. Rev. B, 1992, 46, 1948 CrossRef CAS.
  12. B. Eggen, R. Johnston, S. Li and J. Murrell, Mol. Phys., 1992, 76, 6193.
  13. B. Eggen, R. Johnston and J. Murrell, J. Chem. Soc., Faraday Trans., 1994, 90, 3029 RSC.
  14. D. E. Goldberg, Genetic Algorithms in Search, Optimisation and Machine Learning, Addison Wesley, London, 1989 Search PubMed.
  15. D. Beasley, D. R. Bull and R. R. Martin, Univ. Comput., 1993, 15, 58 Search PubMed.
  16. D. C. Lui and J. Nocedal, Math. Program., 1989, 45, 503.
  17. J. Tersoff, Phys. Rev. Lett., 1986, 56, 632 CrossRef CAS.
  18. G. Xue, J. Global Optim., 1994, 4, 425 Search PubMed.
  19. K. M. Beardmore, PhD thesis, Loughborough University, 1995.
  20. F. Chung and S. Sternberg, Am. Sci, 1993, 81, 56 Search PubMed.
  21. J. Y. Yi, J. S. Ha, J. S. Park and E. H. Lee, J. Phys. Chem. Solids, 1994, 55, 1347 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.