Pulse radiolysis study of one-electron reduction of safranine T

(Note: The full text of this document is currently only available in the PDF Version )

S. N. Guha and J. P. Mittal


Abstract

The one-electron reduction of safranine T by hydrated electrons and various reducing organic radicals in aqueous solution has been studied by the technique of nanosecond pulse radiolysis. The absorption spectrum of the transient semireduced safranine formed in these reactions exhibited λmax at 400 and 650 nm with molar absorption coefficient values of 6.88×103 and 9.9×103 d mol-1 cm-1 respectively and decayed obeying a second-order rate law with a bimolecular rate constant of 0.97×109 d mol-1 s-1 at neutral pH. It has two pKa values of 3.0 and 8.5. The rate constants for the formation of semireduced safranine species by the reactions of most of the reducing radicals with the dye were very high and nearly diffusion controlled. The one-electron reduction potential of safranine T was estimated to be -0.35±0.02 V vs. NHE at pH 5. Reaction of H atoms with SF+ at acidic pH was also studied. The results obtained have been discussed with respect to the possibilities of different modes of H-atom reactions with safranine T.


References

  1. S. N. Guha, P. N. Moorthy and J. P. Mittal, Radiat. Phys. Chem., 1992, 39, 183 CrossRef CAS.
  2. S. N. Guha and J. P. Mittal, Proc. Ind. Acad. Sci (Chem. Sci.), 1992, 104, 497 Search PubMed.
  3. A. A. Krasnovskii, Ann. Rev. Plant Physiol., 1960, 11, 363 Search PubMed.
  4. A. A. Krasnovskii and N. N. Drozdova, Biokhimiya, 1961, 26, 859 Search PubMed.
  5. T. T. Bannister, Photochem. Photobiol., 1963, 2, 519 CAS.
  6. M. Kaneko and A. Yamada, Phys. Chem., 1977, 81, 1213 Search PubMed.
  7. A. K. Jana, S. Roy and B. B. Bhowmik, Energy (Oxford), 1988, 13, 161 Search PubMed.
  8. K. R. Gopidas and P. V. Kamat, Langmuir, 1989, 5, 22 CrossRef CAS.
  9. A. K. Chibisov, A. V. Karyakin, B. V. Skortsov and N. V. Shvindt, Khim. Vys. Energ., 1968, 2, 3 Search PubMed.
  10. C. E. Baumgartner, H. H. Richtol and D. A. Aikens, Photochem. Photobiol., 1981, 34, 17 CAS.
  11. M. G. Neumann, J. Photochem., 1986, 32, 379 CrossRef CAS.
  12. S. N. Guha, P. N. Moorthy and K. N. Rao, Mol. Photochem., 1979, 9, 183 Search PubMed.
  13. J. Mahadevan, S. N. Guha, K. Kishore and P. N. Moorthy, Proc. Ind. Acad. Sci (Chem. Sci.), 1989, 101, 43 Search PubMed.
  14. R. H. Kayser and R. H. Young, Photochem. Photobiol., 1976, 24, 395 CAS.
  15. S. Solar, W. Solar and N. Getoff, Radiat. Phys. Chem., 1982, 20, 165 CrossRef CAS.
  16. S. N. Guha, P. N. Moorthy, K. Kishore, D. B. Naik and K. N. Rao, Proc. Ind. Acad. Sci (Chem. Sci.), 1987, 99, 261 Search PubMed.
  17. D. G. Marketos, Z. Phys. Chem. (Frankfurt), 1969, 65, 306 CAS.
  18. E. M. Fielden, in The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis, ed. J. H. Baxendale and F. Busi, Reidel, Boston, 1984, p. 59 Search PubMed.
  19. N. T. Rakintzis, Z. Phys. Chem. (Frankfurt), 1968, 57, 99 CAS.
  20. R. C. Prince, S. J. G. Linkletter and P. L. Dutton, Biochim. Biophys. Acta, 1981, 635, 132 CrossRef CAS.
  21. S. Solar, W. Solar, N. Getoff, J. Holcman and K. Sehested, Radiat. Phys. Chem., 1988, 32, 585 CrossRef CAS.
  22. J. Lilie, G. Beck and A. Henglein, Ber. Bunsen-Ges. Phys. Chem., 1971, 71, 458 Search PubMed.
  23. A. Henglein, in Electroanalytical Chemistry, ed. A. J. Bard, Marcel Dekker, New York, 1976, p. 163 Search PubMed.
  24. M. S. Chan and J. R. Bolton, Solar Energy, 1980, 24, 561 Search PubMed.
  25. Chem. Abstr., 1988, 108, 6579 cs Search PubMed.
  26. R. D. Stiehler, T. Chen and W. M. Clark, J. Am. Chem. Soc., 1933, 55, 891 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.