Dynamics of solubilization of naphthalene and pyrene into dodecylammonium trifluoroacetate micelles

(Note: The full text of this document is currently only available in the PDF Version )

Yoshikiyo Moroi, Tomo Morisue, Hiraku Matsuo, Hiroaki Yonemura, Robin Humphry-Baker and Michael Grätzel


Abstract

A photochemical probe was used to determine the rate constant for a solubilizate molecule to escape from its parent micelle, where the quencher molecules for the excited probe are located exclusively outside of the micelle. Stern–Volmer kinetics of the solubilizates, naphthalene and pyrene, in dodecylammonium trifluoroacetate micelles were analyzed at 35°C in order to determine their exit (k-) and entry rate constants (k+) from and to the micelle. The ion Ag+, with the same charge as the micelle, was used as the quencher for the excited probes. The values of k- (k+) were determined to be 6.11×106 s-1 (2.25×1012 d mol-1 s-1) and 1.39×106 s-1 (1.51×1013 d mol-1 s-1) for naphthalene and pyrene, respectively, from analysis of the Stern–Volmer quenching ratio vs. the quencher concentration in micellar solutions. Analysis using the initial slope of the curve led to slightly lower values for the rate constants. The spontaneous decay rate constants for the excited probes in the aqueous bulk and solubilized in the micelles and the quenching rates of excited probes by the quencher were also determined from this analysis. The same experiments were also conducted with anthracene, but the final kinetic results were not discussed as they could not be readily explained.


References

  1. M. L. E. McBain and E. Hutchinson, Solubility and Related Phenomena, Academic Press, New York, 1955 Search PubMed.
  2. P. H. Elworthy, A. T. Florence and C. B. Macfarlene, Solubilization by Surface-Active Agents and Its Application in Chemistry and Biological Sciences, Chapman & Hall, London, 1968 Search PubMed.
  3. R. A. Kroc, R. L. Kroc, G. D. Whedon and W. Garey, Hepatology, The Chemistry of Bile in Health and Disease, Williams & Wilkins, Baltimore, 1984, vol. 4(5) Search PubMed.
  4. K. P. Ananthapadmanabhan, E. D. Goddard, N. J. Turro and P. L. Kuo, Langmuir, 1985, 1, 352 CrossRef.
  5. M. Maestri, P. P. Infelta and M. Grätzel, J. Chem. Phys., 1978, 69, 1522 CrossRef CAS.
  6. Y. Moroi, J. Phys. Chem., 1980, 84, 2186 CrossRef CAS.
  7. Y. Moroi, K. Sato and R. Matuura, J. Phys. Chem., 1982, 86, 2463 CrossRef CAS.
  8. Y. Moroi, H. Noma and R. Matuura, J. Phys. Chem., 1983, 87, 872 CrossRef CAS.
  9. Y. Moroi, Micelles : Theoretical and Applied Aspects, Plenum Press, New York, 1992 Search PubMed.
  10. Y. Moroi, K. Mitsunobu, T. Morisue, Y. Kadobayshi and M. Sakai, J. Phys. Chem., 1995, 99, 2372 CrossRef CAS.
  11. T. Morisue, Y. Moroi and O. Shibata, J. Phys. Chem., 1994, 98, 12995 CrossRef CAS.
  12. P. P. Infelta, M. Grätzel and J. K. Thomas, J. Phys. Chem., 1974, 78, 190 CrossRef CAS.
  13. M. Almgren, F. Grieser and J. K. Thomas, J. Am. Chem. Soc., 1979, 101, 279 CrossRef CAS.
  14. Y. Moroi, P. Infelta and M. Grätzel, J. Am. Chem. Soc., 1979, 101, 573 CrossRef CAS.
  15. R. Zana, Surfactant Solutions: New Methods of Investigation, Marcel Dekker, New York and Basel, 1987, ch 8 Search PubMed.
  16. E. A. G. Aniansson, S. N. Wall, M. Almgen, H. Hoffmann, I. Kielman, W. Ulbricht, R. Zana, J. Lang and C. Tondre, J. Phys. Chem., 1977, 19, 1 CrossRef.
  17. G. Sugihara, D. Nagadome, T. Yamashita, N. Kawachi, H. Takagi and Y. Moroi, Colloids Surf., 1991, 61, 111 CrossRef CAS.
  18. Y. Moroi, K. Motomura and R. Matuura, J. Colloid Interface Sci., 1979, 64, 111.
Click here to see how this site uses Cookies. View our privacy policy here.