Ionic medium effect on the rate of hydrolysis of pyrophosphate ions at neutral pH and 70–85°C

(Note: The full text of this document is currently only available in the PDF Version )

Tetsuya Nakazato, Norimasa Yoza and Shin-ichi Ishiguro


Abstract

The rates of hydrolysis of pyrophosphate (diphosphate) ions with the P2O74- skeleton have been studied in aqueous solutions containing various alkali-metal and tetraalkylammonium halides at neutral pH and 70, 80 and 85°C. The apparent rate constant of hydrolysis at a given pH and temperature increases in the order LiCl<NaCl<KCl<(CH3)4NBr<(n-C3H7)4NBr. As the P2O74- ion is protonated to form HP2O73- and H2P2O72-, the protonation constants at elevated temperature were evaluated on the basis of the van't Hoff equation using the protonation constants and the corresponding enthalpies of formation at 25°C. The protonation constants at elevated temperature increase almost in the same order as that of the medium of 1:1 electrolytes at 25°C, which suggests that the difference in the species distribution of HP2O73- and H2P2O72- plays a primary role in the ionic medium effect. Their intrinsic rate constants of hydrolysis were then extracted on the basis of the protonation constants at each temperature. Interestingly, the intrinsic rate constant of H2P2O72- exhibits practically no dependence on the ionic medium, while the corresponding rate constant of HP2O73- increases in the order Li+<Na+≈K+≈(CH3)4N+<(n-C3H7)4N+. The latter is unexpected if we take into account the acceleration effect upon formation of the metal–polyphosphate complexes. Furthermore, the activation enthalpy is practically unchanged, while the activation entropy varies depending on the ionic medium. It is thus supposed that the change in the hydration structure around the HP2O73- ion owing to the overlap with that of medium cations plays an essential role in the ionic medium effect.


References

  1. L. C. Cantley, Jr. and L. Josephson, Biochem., 1977, 15, 5280.
  2. O. A. Moe and L. G. Butler, J. Biol. Chim., 1972, 247, 7308 Search PubMed.
  3. L. G. Butler and J. W. Sperow, Bioinorg. Chem., 1977, 7, 141 CrossRef CAS.
  4. H. Hirano, Y. Baba, N. Yoza and S. Ohashi, Anal. Chim. Acta, 1986, 179, 209 CrossRef CAS.
  5. R. J. Barry and D. Dunaway-Mariano, Arch. Biochem. Biophys., 1987, 256, 196 CrossRef.
  6. B. S. Cooperman, A. Panackal, B. Springs and D. J. Hamm, Biochemistry, 1981, 20, 6051 CrossRef CAS.
  7. E. J. Griffith and R. L. Buxton, J. Am. Chem. Soc., 1967, 89, 2884 CrossRef CAS.
  8. S. Greenfield and M. Clift, Analytical Chemistry of the Condensed Phosphates, Pergamon Press, Oxford, 1975, pp. 18–33 Search PubMed.
  9. J. M. Rainey, M. M. Jones and W. L. Lockhart, J. Inorg. Nucl. Chem., 1964, 26, 1415 CrossRef CAS.
  10. M. Watanabe, M. Matsuura and T. Yamada, Bull. Chem. Soc. Jpn., 1981, 54, 738 CAS.
  11. J. R. Van Wazer, Phosphorus and its Compounds, Vol. I, Interscience Publishers, London, 1958, pp. 452–468 Search PubMed.
  12. W. Wieker and E. Thilo, Z. Anorg. Alleg. Chem., 1960, 306, 48 Search PubMed.
  13. G. Kura, Bull. Chem. Soc. Jpn., 1987, 60, 2857 CAS.
  14. L. de Meis, Arch. Biochem. Biophys., 1993, 306, 287 CrossRef CAS.
  15. N. Yoza, H. Hirano, Y. Baba and S. Ohashi, J. Chromatogr., 1985, 325, 385 CrossRef CAS.
  16. S. Ishiguro, H. Suzuki, M. Zama, A. K. Basak and H. Ohtaki, Bull. Chem. Soc. Jpn., 1986, 59, 2599 CAS.
  17. S. Ishiguro, T. Pithprecha and H. Ohtaki, Bull. Chem. Soc. Jpn., 1986, 59, 1487 CAS.
  18. S. Ishiguro, H. Wada and H. Ohtaki, Bull. Chem. Soc. Jpn., 1985, 58, 932 CAS.
  19. H. Suzuki and S. Ishiguro, Netsu Sokutei, 1988, 15, 152 Search PubMed.
  20. R. R. Irani, J. Phys. Chem., 1961, 65, 1463 CAS.
  21. R. P. Mitra, H. C. Malhotra and D. V. S. Jain, Trans. Faraday Soc., 1966, 62, 167 RSC.
  22. C. D. Stefano, C. Foti and A. Gianguzza, J. Chem. Res., 1994, (S), 464 Search PubMed.
  23. P. G. Daniele, C. Rigano and S. Sammartano, Anal. Chem., 1985, 57, 2956 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.