Kinetics of the N+NCO reaction at 298 K

(Note: The full text of this document is currently only available in the PDF Version )

Richard A. Brownsword, Gus Hancock and Dwayne E. Heard


Abstract

The rate constant for the reaction of NCO (X2Π) radicals with N(4S) atoms at room temperature has been determined to be (5.5±0.8)×10-11 cm3 molecule-1 s-1 by direct measurement by laser-induced fluorescence. This result is 70% higher than a value estimated from shock tube data at 1700 K, and suggests that the reaction takes place over a largely attractive potential surface. When the result is combined with high temperature data, it suggests that the major products of the reaction areN2+CO, but as these cannot be formed in their ground electronic states in a spin-allowed process, arguments are proposed for the formation of triplet state products. No IR emission could be assigned as originating from CO, and possible reasons for this are discussed.


References

  1. J. A. Miller and C. T. Bowman, Prog. Energy Combust. Sci., 1989, 15, 287 CrossRef CAS.
  2. A. Lifshitz and M. Frenklach, Int. J. Chem. Kinet., 1980, 12, 159 CrossRef CAS.
  3. M. Y. Louge and R. K. Hanson, Int. J. Chem. Kinet., 1984, 16, 231 CrossRef CAS; M. Y. Louge and R. K. Hanson, Combust. Flame, 1984, 58, 291 CrossRef CAS.
  4. Thermodynamic data were taken from R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson, Jr., J. A. Kerr and J. Troe, J. Phys. Chem. Ref. Data, 1992, 21, 1125 Search PubMed except for ΔH°298(NCO) which was taken from A. L. L. East and W. D. Allen, J. Chem. Phys., 1993, 99, 4638 CAS.
  5. J. L. Cookson, G. Hancock and K. G. McKendrick, Ber. Bunsen-Ges. Phys. Chem., 1985, 89, 335 Search PubMed.
  6. R. N. Dixon, Philos. Trans. R. Soc. London, A, 1960, 252, 165 Search PubMed.
  7. C. J. Astbury, G. Hancock and K. G. McKendrick, Chem. Phys. Lett., 1993, 89, 405 CAS.
  8. C. L. Lin and F. Kaufman, J. Chem. Phys., 1971, 55, 3760 CrossRef CAS.
  9. G. Hancock, G. W. Ketley and A. J. MacRobert, J. Phys. Chem., 1984, 88, 2104 CrossRef CAS.
  10. P. Biggs, G. Hancock, D. E. Heard and R. P. Wayne, Meas. Sci. Technol., 1990, 1, 630 CrossRef CAS.
  11. D. E. Heard, R. A. Brownsword, D. G. Weston and G. Hancock, Appl. Spectrosc., 1992, 47, 1438; R. A. Brownsword and G. Hancock, J. Chem. Soc., Faraday Trans., 1997, 93, 1279 RSC.
  12. M. B. Colkett, in 183rd Meeting of the American Chemical Society, Abstract of Papers, 1982, p. 7 Search PubMed.
  13. D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker and J. Warnatz, J. Phys. Chem. Ref. Data, 1992, 21, 411 CAS.
  14. I. R. Sims and I. W. M. Smith, J. Chem. Soc., Faraday Trans., 1993, 89, 1 RSC.
  15. R. Atkinson, D. L. Baulch, R. A. Cox, R. F. Hampson Jr., J. A. Kerr and J. Troe, J. Phys. Chem. Ref. Data, 1989, 18, 881 CAS.
  16. J. van Hoeymissen, I. de Boelpaep, W. Uten and J. Peeters, J. Phys. Chem., 1994, 98, 3725 CrossRef CAS.
  17. P. Dransfeld and H. Gg. Wagner, Z. Phys. Chem., 1987, 153, 89 CAS.
  18. C. Tsai, S. M. Belanger, J. T. Kim, J. R. Lord and D. L. McFadden, J. Phys. Chem., 1989, 93, 1916 CrossRef CAS.
  19. G. Marston, F. L. Nesbitt and L. J. Stief, J. Chem. Phys., 1989, 91, 3483 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.