Surface structures, reduction pattern and oxygen chemisorption of V2O5/SiO2catalysts

(Note: The full text of this document is currently only available in the PDF Version )

F. Arena, F. Frusteri, G. Martra, S. Coluccia and A. Parmaliana


Abstract

The influence of V2O5 loading (2–50 wt.%) on surface structures and the reduction pattern of V2O5/SiO2 (VPS) catalysts has been systematically investigated by diffuse reflectance UV–VIS spectroscopy and temperature-programmed reduction (TPR) measurements in the temperature range 200–1100°C. Both TPR and UV–VIS spectra of VPS catalysts indicate that at loadings lower than 10% vanadia forms isolated surface VO43- species, while two-dimensional structures and V2O5 crystallites become the prevailing species in highly loaded (>10% V2O5) systems. A mathematical modelling approach to the TPR spectra has allowed the influence of the loading on the concentration of the above surface V5+ species to be highlighted. The easier reduction of isolated VO43- species has been ascribed to the tetrahedral coordination geometry (Td) of the V ions therein. By contrast, less reducible V2O5 crystallites, with V ions in an octahedral coordination (Oh), give rise to several reduction peaks in the range 600–1000°C which monitor a step-wise reduction pattern. The chemisorption properties of VPS catalysts and bulk V2O5 have been comparatively probed by high- (HTOC) and low-temperature oxygen chemisorption (LTOC) measurements. The effect of loading on the dispersion of V2O5/SiO2 catalysts has been thoroughly addressed.


References

  1. G. Lischke, W. Hanke, H.-G. Jerschkewitz and G. Ohlmann, J. Catal., 1985, 91, 54 CrossRef CAS.
  2. I. E. Wachs, R. Y. Saleh, S. S. Chan and C. C. Chersich, Appl. Catal., 1985, 15, 339 CrossRef CAS.
  3. J. Haber, A. Kozlowska and R. Kozlowski, J. Catal., 1986, 102, 52 CrossRef CAS.
  4. J. Kijenski, A. Baiker, M. Glinski, P. Dollenmeier and A. Wokaun, J. Catal., 1986, 101, 1 CrossRef CAS.
  5. N. K. Nag, V. R. Chary, B. R. Rao and V. S. Subrahmanyam, Appl. Catal., 1987, 31, 73 CrossRef CAS.
  6. S. T. Oyama, G. T. Went, K. B. Lewis, A. T. Bell and G. A. Somorjai, J. Phys. Chem., 1989, 93, 6786 CrossRef CAS.
  7. J. M. Lopez Nieto, G. Kremenic and J. L. G. Fierro, Appl. Catal., 1990, 61, 235 CrossRef.
  8. G. Deo and I. E. Wachs, J. Catal., 1991, 129, 307 CrossRef CAS.
  9. G. Deo and I. E. Wachs, J. Phys. Chem., 1991, 95, 5889 CrossRef CAS.
  10. L. Owens and H. H. Kung, J. Catal., 1993, 144, 202 CrossRef CAS.
  11. B. M. Reddy, B. Manohar and E. P. Reddy, Langmuir, 1993, 9, 1781 CrossRef CAS.
  12. M. M. Koranne, J. G. Goodwin and G. Marcelin, J. Catal., 1994, 148, 369 CrossRef CAS.
  13. H. Bosch and F. Janssen, Catal. Today, 1988, 2, 369 CrossRef CAS.
  14. A. Parmaliana, V. Sokolovskii, D. Miceli, F. Arena and N. Giordano, J. Catal., 1994, 148, 514 CrossRef CAS.
  15. M. Schraml-Marth, A. Wokaun, M. Pohl and H.-L. Krauss, J. Chem. Soc., Faraday Trans., 1991, 87, 2635 RSC.
  16. N. K. Nag and F. E. Massoth, J. Catal., 1990, 124, 127 CrossRef CAS.
  17. H. Bosch, B. J. Kip, J. G. van Ommen and P. J. Gellings, J. Chem. Soc., Faraday Trans. 1, 1984, 80, 2479 RSC.
  18. A. Baiker and D. Monti, J. Catal., 1985, 91, 361 CrossRef CAS.
  19. W. Hanke and R. Beinert, Z. Anorg. Allg. Chem., 1975, 414, 109 CrossRef CAS.
  20. G. Centi, S. Perathoner, F. Triflrò, A. Aboukais, C. F. Aïssi and M. Guelton, J. Phys. Chem., 1992, 96, 2617 CrossRef CAS.
  21. G. Kortüm, Reflectance Spectroscopy, Springer-Verlag, Berlin, 1969, p. 58 Search PubMed.
  22. G. C. Bond and A. F. Tahir, Appl. Catal., 1991, 71, 1 CrossRef CAS.
  23. F. Arena and A. Parmaliana, J. Phys. Chem., 1996, 100, 19994 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.