IR spectra, relative stability and angular geometry of vinyl chloride[ndash ]HCl, vinyl bromide[ndash ]HCl and allyl chloride[ndash ]HCl van der Waals complexes observed in liquefied argon

(Note: The full text of this document is currently only available in the PDF Version )

W. A. Herrebout and B. J. van der Veken


Abstract

The mid-IR spectra (4000–400 cm-1) of vinyl chloride–HCl, vinyl bromide–HCl and allyl chloride–HCl mixtures, dissolved in liquefied argon at 105 K, have been examined. In all spectra, evidence was found for the existence of a 1:1 van der Waals complex. At higher concentrations of hydrogen chloride, in the spectra of the vinyl chloride–HCl mixtures, absorption bands of a 1:2 species were also observed. Using spectra recorded at several temperatures between 95 and 120 K, the complexation enthalpies of CH2[double bond, length as m-dash]CHCl·HCl and CH2[double bond, length as m-dash]CHCl·(HCl)2 were determined to be -6.5±0.2 kJ mol-1 and -10.6±0.3 kJ mol-1, respectively.

A structural study, using abinitio calculations at the MP2/6-31+G** level, indicates that the complexation between vinyl chloride and HCl can occur either via the chlorine atom or via the π-bond. From a comparison of the experimental with the abinitio vibrational frequencies it was concluded that all observed bands of the 1:1 complex are due to a species complexed via the chlorine atom. A similar conclusion applies to the vinyl bromide and allyl chloride complexes.


References

  1. L. Andrews, G. L. Johnson and B. J. Kelsall, J. Am. Chem. Soc., 1982, 104, 6180 CrossRef CAS.
  2. W. O. George, P. K. Hirani, E. N. Lewis, W. F. Maddams and D. A. Williams, J. Mol. Struct., 1986, 141, 227 CrossRef CAS.
  3. W. A. Herrebout and B. J. van der Veken, J. Phys. Chem., 1996, 100, 15695 CrossRef CAS.
  4. W. A. Herrebout and B. J. van der Veken, J. Phys. Chem., 1993, 97, 10622 CrossRef CAS.
  5. W. A. Herrebout and B. J. van der Veken, J. Phys. Chem., 1994, 98, 2836 CrossRef CAS.
  6. B. J. van der Veken and F. R. De Munck, J. Chem. Phys., 1992, 97, 3060 CrossRef CAS.
  7. P. Hoboza and R. Zahradnik, Int. J. Quant. Chem., 1992, 42, 581 CrossRef.
  8. GAUSSIAN 92, Revision E3, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1992.
  9. H. B. Schlegel, J. Comput. Chem., 1982, 3, 214 CrossRef CAS.
  10. S. B. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.
  11. S. Scheiner, in Theoretical Treatment of Large Molecules and Their Interactions, ed. Z. B. Maksic and D. B. Boyd, Springer-Verlag, Berlin, 1991, and references therein Search PubMed.
  12. W. A. Herrebout, B. J. van der Veken and J. R. Durig, THEOCHEM, 1995, 332, 231 CrossRef CAS.
  13. C. W. Gullikson and J. Rud. Nilssen, J. Mol. Spectrosc., 1957, 1, 158 CrossRef CAS and references therein.
  14. J. R. Durig, D. T. Durig, B. J. van der Veken, F. R. De Munck and W. A. Herrebout, in preparation.
  15. B. J. van der Veken, J. Phys. Chem., 1996, 100, 17436 CrossRef CAS.
  16. N. S. True, Chem. Phys. Lett., 1983, 101, 326 CrossRef CAS.
  17. A. Streitwieser and C. H. Heathcock, Introduction to Organic Chemistry, Macmillan, New York, 3rd edn., 1985 Search PubMed.
  18. G. Maes and J. Smets, J. Phys. Chem., 1993, 97, 1818 CrossRef CAS.
  19. W. A. Herrebout, G. P. Everaert, B. J. van der Veken and M. O. Bulanin, J. Chem. Phys., submitted Search PubMed.
  20. M. M. Szczesniak, I. J. Kurnig and S. Scheiner, J. Chem. Phys., 1988, 89, 3131 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.