Isopycnic focusing study of the transient and equilibrium states in the settling of colloidal particles generated by coupled electric and gravitational fields

(Note: The full text of this document is currently only available in the PDF Version )

Josef Janča and Milena Špírková


Abstract

The combination of the electric field to form a density gradient in a suspension of the charged colloidal particles with the gravitational field forces to focus the large-size uncharged particles into isopycnic layers was used to study the kinetics of the formation of the density gradient. Isopycnic focusing of coloured density marker beads was used to visualize the evolution and the final quasi-equilibrium shape of the density gradient formed in a suspension of the silica particles. The influence of the electric field intensity, of the average concentration of the colloidal silica particles, and of the electrolytes combined with two different electrode systems was investigated under conditions of static thin layer focusing. The experimental results obtained under model static conditions should allow the understanding of the processes governing the isopycnic or more general isoperichoric focusing in thin layers under dynamic flow conditions.


References

  1. A. Kolin, in Electrofocusing and Isotachophoresis, ed. B. J. Radola and D. Graesslin, de Gruyter, Berlin, 1977 Search PubMed.
  2. J. Janča, Makromol. Chem., Rapid Commun., 1982, 3, 887 Search PubMed.
  3. J. Janča, Mikrochim. Acta, 1994, 112, 197 CAS.
  4. J. Janča and R. Audebert, Int. Symp. Polym. Anal. Charact., Inuyama, Japan, 1992 Search PubMed; J. Appl. Polym. Sci., Appl. Polym. Symp., 1993, 52, 63 Search PubMed.
  5. J. Janča and M. Špírková, J. Colloid Interface Sci., 1996, 184, 181 CrossRef CAS.
  6. R. J. Hunter, Zeta Potential in Colloid Science, Principles and Applications, Academic Press, London, 1981 Search PubMed.
  7. J. Janča and R. Audebert, Mikrochim. Acta, 1994, 113, 299.
  8. J. Janča, J. Colloid Interface Sci., 1997, 189, 51 CrossRef CAS.
  9. M. Mason and W. Weaver, Phys. Rev., 1924, 23, 412 CrossRef CAS.
  10. W. Weaver, Phys. Rev., 1926, 27, 499 CrossRef CAS.
  11. G. M. Nazarian, J. Phys. Chem., 1958, 62, 1607 CrossRef CAS.
  12. J. Janča and R. Audebert, Mikrochim. Acta, 1993, 111, 163 CAS.
  13. G. K. Batchelor, J. Fluid Mech., 1972, 52, 245.
  14. H. J. H. Clercx and P. P. J. M. Schram, J. Chem. Phys., 1992, 96, 3137 CrossRef CAS.
  15. K. D. Caldwell, L. F. Kesner, M. N. Myers and J. C. Giddings, Science, 1972, 176, 296 CAS.
  16. K. D. CaldwelLand and Y. S. Gao, Anal. Chem., 1993, 65, 1764 CrossRef.
  17. Capillary Electrophoresis: Theory and Practice, ed. P. D. Grossman and J. C. Colburn, Academic Press, New York, 1992 Search PubMed.
  18. P. Delahay, Double Layer and Electrode Kinetics, Wiley, New York, 1965 Search PubMed.
  19. J. Koryta and J. Dvořák, Principles of Electrochemistry, Wiley, New York, 1993 Search PubMed.
  20. C. G. Konif, E. M. F. Van Iersel, A. Vrij and W. B. Russel, J. Chem. Phys., 1985, 83, 4717 CrossRef.
  21. J. Janča and M. Špírková, Collect. Czech. Chem. Commun., 1996, 61, 819 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.