Hydrogen-bonded forms of methanol IR spectra and abinitiocalculations

(Note: The full text of this document is currently only available in the PDF Version )

John R. Dixon, William O. George, Md. Fokhray Hossain, Rhobert Lewis and Jason M. Price


Abstract

The IR spectra of methanol as a dilute solution in CCl4 and in the vapour phase have been measured between 2500 and 4000 cm-1 and between 1000 and 1100 cm-1 in order to better understand the nature of the hydrogen bonding equilibria present. The integrated absorption coefficient of the monomeric O–H stretching mode is calculated as (2.157±0.025)×104 m mol-1 and the proportion of the components associated with the three principal bands and a fourth weaker band estimated. Seven possible components were considered which were monomer, closed cyclic and open chain dimers, trimers and tetramers. Abinitio calculations were carried out on these components using six basis sets up to the restricted Hartree Fock 6-311++G(3df,3pd) level. Relevant calculated infrared wavenumber and intensity values, O–H···O bond lengths and hydrogen bonding energies are reported. The cyclic dimer is shown to be a transition state with the open dimer forming a stable minimum energy form. In the case of the trimer and tetramer the hydrogen-bonding energy is calculated to be, respectively, 12 and 32 kJ mol-1 greater in the cyclic form than in the open form with good agreement at the RHF6-31G(d) and RHF 6-31++G(d,p) levels. The effect of basis set superposition errors are found to be relatively small. The experimental and theoretical results are consistent with an equilibrium involving monomer, open dimer, cyclic trimer and cyclic tetramer.


References

  1. W. M. Latimer and W. H. Rodebush, J. Am. Chem. Soc., 1920, 42, 1419 CrossRef CAS.
  2. G. C. Pimentel and A. L. McClellan, The Hydrogen Bond, W. H. Freeman and Co., San Francisco and London, 1960, p. 320 Search PubMed.
  3. J. D. Watson and F. H. C. Crick, Nature (London), 1953, 171, 737 CAS.
  4. U. Liddel and E. D. Becker, Spectrochim. Acta, Part A, 1975, 10, 70.
  5. L. J. Bellamy and R. J. Pace, Spectrochim. Acta, Part A, 1966, 22, 525 CrossRef CAS.
  6. R. G. Lee, R. H. Hunt, E. K. Plyler and D. M. Dennison, J. Mol. Spectrosc., 1975, 57, 138 CrossRef CAS.
  7. A. J. Barnes, H. E. Hallam and D. Jones, Proc. R. Soc. London, Ser. A, 1973, 335, 97 CrossRef CAS.
  8. L. A. Curtiss and M. Blander, Chem. Rev., 1988, 88, 827 CrossRef.
  9. R. G. Inskeep, J. M. Kelliher, P. E. McMahon and B. G. Somers, J. Chem. Phys., 1958, 28, 1033 CrossRef CAS; R. G. Inskeep, F. E. Dickson and H. M. Olson, J. Mol. Spectrosc., 1960, 5, 284 CrossRef CAS.
  10. M. Van Thiel, E. D. Becker and G. C. Pimentel, J. Chem. Phys., 1957, 27, 95 CrossRef CAS.
  11. A. J. Barnes and H. E. Hallam, Trans. Faraday Soc., 1970, 66, 1920 RSC.
  12. V. Cheam, S. B. Farnham and S. D. Christian, J. Phys. Chem., 1970, 74, 23.
  13. F. Huisken and M. Stemmler, Chem. Phys. Lett., 1988, 144, 391 CrossRef CAS.
  14. G. Brink and L. Glasser, J. Phys. Chem., 1978, 82, 1000 CrossRef CAS.
  15. K. Shinomiya and T. Shinomiya, Bull. Chem. Soc. Jpn., 1990, 63, 1093 CAS.
  16. S. Perez-Casas, L. M. Trejo and M. Costas, J. Chem. Soc., Faraday Trans., 1991, 87, 1733 RSC.
  17. M. Iwahashi, Y. Hayashi, N. Hachiya, H. Matsuzawa and H. Kobayashi, J. Chem. Soc., Faraday Trans., 1993, 89, 707 RSC.
  18. G. M. Forland, F. O. Libnau, O. M. Kvalheim and H. Hoiland, Appl. Spectrosc., 1996, 50(10), 10.
  19. A. Curtiss, J. Chem. Phys., 1977, 67, 1144 CrossRef CAS.
  20. O. Mo, M. Yanez and J. Elguero, THEOCHEM, 1994, 314, 73 CrossRef.
  21. M. J. Frisch, G. W. Trucks, H. B. Schegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Oritz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Gaussian Inc., Pittsburgh, PA, 1995.
  22. Galactic Grams/386, Galactic Industries Corporation, 1995.
  23. J. R. Dixon, W. O. George and Rh. Lewis, The Networking of Infrared Spectrometers and Computers, in Computing Applications in Molecular Spectroscopy, ed. W. O. George and D. Steele, Royal Society of Chemistry, Cambridge, 1995, p. 61 Search PubMed.
  24. M. J. Frisch, J. E. Del Bene, J. S. Binkley and H. F. Schrader, J. Chem. Phys., 1986, 84, 2279 CrossRef CAS.
  25. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, PA, 1996, p. 64 Search PubMed.
  26. O. Mo, M. Yanez and J. Elguero, J. Chem. Phys., 1992, 97, 6628 CrossRef CAS.
  27. Y. C. Tse and M. D. Newton, J. Am. Chem. Soc., 1977, 99, 611 CrossRef CAS.
  28. J. A. Platts, S. T. Howard and B. R. F. Bracke, J. Am. Chem. Soc., 1996, 118, 2726 CrossRef CAS.
  29. S. F. Boys and F. Bernardi, Mol. Phys., 1970, 19, 553.
Click here to see how this site uses Cookies. View our privacy policy here.